ELLINGTON BRANCH STREAM RESTORATION SITE FULL DELIVERY PROJECT WARREN COUNTY, NORTH CAROLINA

EEP Project No. 16-D06045

FINAL Monitoring Report #3 (Year 2010)

Prepared for:

NC Department of Environment and Natural Resources Ecosystem Enhancement Program 2728 Capital Boulevard, Suite 1H 103 Raleigh, NC 27604

August 2010

Prepared by:

128 Raleigh Street Holly Springs, NC 27540 Under Contract With:

Sungate Design Group, P.A.

915 Jones Franklin Road Raleigh, NC 27606

Contact Information:

G. Lane Sauls Jr. - Principal

(919) 557-0929

lanesauls@ecologicalengineering.net

SECTION III. TABLE OF CONTENTS

SEC 1	FION I. 7	TITLE PAG	E	Page
		SIGNATUR		
SEC.	FION III.	, TABLE OF	F CONTENTS	1
SEC	ΓΙΟΝ IV.	EXECUTI	VE SUMMARY	
			 ing	
	•		Monitoring	
SEC	FION V	PROJECT I	BACKGROUND	5
	A.		d Setting	
	B.		Structure and Objectives	
	C.	÷	tory and Background	
	D.		Plan View Drawings	
SFC	ΓΙΟΝ VI	PROIFCT	CONDITION AND MONITORING RESULTS	13
SEC.	A.		Assessment	
	11.	U	1 Data	
			getative Problem Areas	
			getative Problems Areas Plan View	
			m Counts	
	B.		essment	
	D.		cedural Items	
			drologic Criteria	
			nk Stability Assessment	
			eam Problem Areas	
			ed Station Photographs	
			ual Stability Assessment	
			eam Qualitative Measures	
SEC	FION VI	L METHOD	OLOGY SECTION	36
TAB				
			Project Structure Table	
		t Table II.	Project Activity and Reporting History	
		t Table III.	Project Contact Table	
		t Table IV.	Project Background Table	
		t Table V.	Preliminary Soil Data	
		t Table VI.	Vegetative Problem Areas	
		t Table VII.	Planted Stem Counts for Each Species Arranged by Plot	
	HVD1D1		VERTUCATION OF RANKTITLE EVENTS	())

Exhibit Table VIII.	Verification of Bankfull Events	. 22
Exhibit Table IX.	BEHI and Sediment Export Estimates	. 23
Exhibit Table X.	Stream Problem Areas.	. 24
Exhibit Table XI.	Categorical Stream Feature Visual Stability Assessment	. 25
Exhibit Table XII.	Baseline Morphology and Hydraulic Summary	. 27
Exhibit Table XIII.	Morphology and Hydraulic Monitoring Summary	

FIGURES

Figure 1. Project Site Vicinity Map

APPENDIX A VEGETATION RAW DATA

- 1. Vegetation Raw Data
- 2. Vegetation Monitoring Plot Photograph Summary

APPENDIX B. RAINFALL DATA SUMMARY

APPENDIX C. GEOMORPHIC RAW DATA

- 1. Stream Visual Assessment Table
- 2. Monitoring Photograph Summary
- 3. Cross Section Plots and Raw Data Tables
- 4. Longitudinal Plots and Raw Data Tables
- 5. Pebble Count Plots and Raw Data Tables

SECTION IV. EXECUTIVE SUMMARY

Sungate Design Group, PA (Sungate) entered into a design/build (full delivery) contract with the NC Department of Environment and Natural Resources, Ecosystem Enhancement Program (EEP) on June 21, 2006 to provide 5,000 Stream Mitigation Units (SMUs) in the Roanoke River Basin. The Ellington Branch Stream Restoration Site, hereinafter referred to as the "Project Site," was selected to meet these overall obligations (Figure 1). Ecological Engineering, LLP (Ecological Engineering) is under contract with Sungate to perform the remaining monitoring requirements.

The Project Site is situated in Warren County, North Carolina and includes a portion of Ellington Branch and one of its unnamed tributaries. Ellington Branch is a second order, perennial stream originating approximately one-half mile upstream (south) of the project area. The unnamed tributary (UT) is a first order, perennial stream that unites with Ellington Branch from the west. The project was identified by Sungate in 2005 and selected for full delivery restoration by EEP based its location, attributes, existing condition and overall likelihood for success.

Vegetation Monitoring

Vegetation monitoring for Year 3 was performed by determining density and survival of planted species, and individuals resulting from natural regeneration. Thirteen individual plot locations were randomly established during the as-built surveys. Each vegetation plot covers $100m^2$ and is shaped in the form of a $10m \times 10m$ square.

Vegetation success criteria for the stream riparian areas are based on a minimum survival of 320 stems per acre of planted species through Year 3 and 260 stems per acre at the end of Year 5. Volunteer woody vegetation, although present in most cases, was not included in the survivability calculations. Based on the Year 1 surveys, all plots exhibited surviving planted and transplanted species in excess of 597 planted stems per acre. Year 2 results were slightly lower with the least number of surviving species calculated at a minimum number of approximately 526 planted stems per acre. Year 3 results were slightly less than Year 2, with a minimum stem per acre count of 405 individuals. Volunteer tree and shrub species were observed throughout the riparian area.

Based on the 2010 monitoring results, the Project Site met and exceeded the established success criteria for vegetation based on the survival of the planted species for Year 3 monitoring.

Stream Restoration Monitoring

Stream restoration success criteria for the two restored stream reaches were met during the Year 3 monitoring assessment. No significant changes to the dimension, pattern, profile or bed material were observed. Location surveys of the constructed features were conducted to verify the performance of both channels. Total station surveys were performed to compare the six previously determined stream longitudinal profiles and the 23 permanent stream cross-sections with as-built, Year 1 and Year 2 monitoring data. A modified Wolman pebble count and assessment of the constructed features was also undertaken as part of Year 3 monitoring efforts.

Based on the interpreted data, both Ellington Branch and its UT are stable. All of the structures are functioning as designed and bank erosion is non-existent. Drought conditions during 2008 and 2009 however, continue to be factor effecting sediment transport at the Project Site. Ellington Branch was dry for the first half of 2008 while the UT maintained only a trickle of water. The same scenario occurred during the early summer months of 2009, particularly June and July. As a result, wetland and streamside vegetation has thrived within the bankfull channel areas. Ecological Engineering will continue to closely monitor the effects of vegetation with regard to sediment transport.

Based on cross-section surveys, longitudinal profile surveys and visual observations, channel dimensions and profiles have adjusted, primarily during the bankfull events. These adjustments are more obvious through data interpretations rather than visual observations. Morphological features along Ellington Branch and its UT appear intact. Several shifts are obvious based on the channel profiles and it is anticipated that these are the result of channel equilibrium processes during and immediately after the channel forming flow events occurred. This is obvious since the prolonged drought conditions' effect on the Project Site during the Year 1 and partial Year 2 monitoring periods.

In 2008, one bankfull event was recorded on September 5 and 6, 2008. It was associated with a two-day, tropical storm event that provided more than five inches of rainfall. During 2009, two bankfull events were recorded. These events were a result of normal storms with above average precipitation amounts. The periods were January 6 through 9 and March 1 through March 2. As per the USACE Draft Stream Mitigation Guidelines (2003), the project has successfully met the hydrology requirement of at least two bankfull events occurring in separate years within the monitoring period. Hydrology assessments continued during the fall and winter of Year 2 and spring/ summer periods of Year 3. The Project Site experienced three more bankfull events during this timeframe. The event in November 2009 created Floodflows well above and outside the bankfull stage. These events are critical to the channel forming processes associated with each channel. Hydrological monitoring will continue throughout the monitoring period.

Bank stability assessments were conducted as part of Year 3 monitoring requirements. Based on the existing conditions and the data collected, restoration activities have lowered sediment export rates by approximately 98.5 percent on Ellington Branch and approximately 99 percent on its UT.

SECTION V. PROJECT BACKGROUND

A. Location and Setting

The Project Site is situated approximately four miles south of the Virginia/North Carolina state line in Warren County, North Carolina (Figure 1). SR 1200 (Drewry Road) is approximately 0.3 miles west of the project area, while SR 1221 (Culpepper Road) is approximately 0.2 miles to the east. It can be accessed by using the following directions from Exit 223 along Interstate 85:

- turn left (north) onto SR 1237 (Manson Road), travel approximately 2.5 miles;
- turn right (north) onto Drewry Road, travel approximately 3.0 miles; and
- turn right (east) onto Fleming Farm Road and proceed approximately ¹/₄-mile past homestead and through gate.

Two streams, Ellington Branch and one of its unnamed tributaries, constitute the project. Ellington Branch is oriented in a south to north direction while its UT enters from the west. Both streams meet the NC Division of Water Quality (NCDWQ) perennial stream classification requirements.

B. Mitigation Structure and Objectives

Prior to restoration, Ellington Branch and its UT were severely degraded due to existing land uses and non-restricted cattle access. The existing stream banks on both channels were eroded and overall channel morphology was significantly altered. A total of 4,904 linear feet of existing stream channel was surveyed within the project area, specifically 4,051 linear feet along Ellington Branch and 853 linear feet along its UT.

The goals and objectives of the project were to ultimately create a continuous wooded stream corridor by restoring and re-vegetating the largest reach of disturbed channel and buffer along Ellington Branch. This in turn, would also improve the overall function and habitat associated with the stream channel and riparian areas. The restoration plan included restoration (dimension, pattern and profile parameters) of Ellington Branch and its UT, as well as the establishment and restoration of an active riparian buffer complex. In addition, the goals and objectives were also to restore the primary stream and buffer functions and values associated with nutrient removal and transformation, sediment reduction and retention, flood-flow attenuation, and wildlife (both aquatic and terrestrial) habitat. The Project Site provided an excellent opportunity to restore and preserve a substantial riparian zone on lands that were currently being utilized for pasture and cattle grazing.

Ellington Branch and its UT were restored with methodology consistent with the C stream type. According to Rosgen (1996), this stream type is a slightly entrenched, meandering, gravel dominated, riffle/pool channel with a well developed floodplain. C stream types have gentle gradients less than two percent, display a high width/depth ratio and exhibit sinuosities greater than 1.2. The riffle/pool sequence averages five to seven bankfull widths in length. Its associated stream banks are generally composed of unconsolidated, heterogeneous, non-cohesive, alluvial materials that are finer than the gravel-dominated bed material. Sediment supplies are generally moderate to high. This stream type is characterized by the presence of point bars and other depositional features (Rosgen, 1996). It was favored versus the E stream type since shear in the near bank region is greatly reduced, especially for newly constructed channels. Once the vegetation becomes established, the width/depth ratio may naturally reduce to the characteristic of an E stream type, which is a hydraulically efficient channel form that maintains a high sediment transport capacity.

According to as-built surveys completed during January 2008, a total of 5,063 linear feet of Ellington Branch and its UT were restored using natural channel design methods consistent with Priority Level II stream restoration protocols. This included 3,735 linear feet along Ellington Branch and 1,328 linear feet along its UT. Exhibit Table I denotes the achievements of the project.

Exhibit Table I. Project Structure Table Ellington Branch Stream Restoration (Project No. 16-D06045)										
Project Segment or Reach ID	Mitigation Type Approach		Linear Footage	Stationing	Comment					
Reach I – Ellington Br.	R	P2	1,934	10+00 to 29+34.0	Above Confluence with UT					
Reach II – Ellington Br. R		P2	1,801	29+34.0 to 47+35.0	Below Confluence with UT					
Reach III – UT	R	P2	1,328	10+00 to 23+27.8	Entire Reach					

 \mathbf{R} = Restoration

P2 = Priority Level II

Ecological benefits gained with the restoration of Ellington Branch and its UT include reduced nutrient loading, reduced sediment loading, improved habitat diversity (both terrestrial and aquatic) and improved water quality. By restricting cattle access and implementing riparian buffers along Ellington Branch and its UT, the project will reduce the overall amount of pollution (physical and chemical) leaving the Site and concentrating in the waters downstream. Restoration of the stream channels will ultimately increase foraging and spawning habitat for fish, and other species requiring flowing water. The project will provide an ecological uplift for the entire basin.

C. Project History and Background

The project is undergoing its third formal year of monitoring. Reporting and milestone history for the Project Site is provided in Exhibit Table II. Exhibit Table III provides contact information for all individuals responsible for implementation while relevant background information is provided in Exhibit Table IV.

Exhibit Table II. Project Activity and Reporting History Ellington Branch Stream Restoration (Project No. 16-D06045)									
Activity or Report	Scheduled Completion	Data Collection Complete	Actual Completion or Delivery						
Restoration Plan	January 2007	November 2006	January 2007						
Final Design (90%)	February 2007		February 2007						
Construction	June 2007		May 2007						
Temporary S&E Mix Applied	June 2007		May 2007						
Permanent Seed Mix Applied	June 2007		May 2007						
Bare Root Seedling Installation	December 2007		November 2007						
Mitigation Plan/ As-Built (Year 0 Monitoring- baseline)	March 2008	January 2008	February 2008						
Year 1 Monitoring	November 2008	October 2008	December 2008						
Year 2 Monitoring	August 2009	August 2009	August 2009						
Year 3 Monitoring	August 2010	July 2010	July 2010						
Year 4 Monitoring	August 2011								
Year 5 Monitoring	August 2012								

	oit Table III. Project Contact Table						
Ellington Branch Stream Restoration (Project No. 16-D06045)							
Designer Ecological Engineering, LLP (current) Sungate Design Group, P.A. (previous)	Ms. Jenny S. Fleming, PE 128 Raleigh Street Holly Springs, NC 27540 (919) 557-0929						
Construction Contractor	Mr. Robert Lucas						
Shamrock Environmental Corporation	P.O. Box 14987 Greensboro, NC 27415 (336) 375-1989						
Planting Contractor	Mr. David Winstead						
Winstead's Reforestation	536 Jackson Road Nashville, NC 27856 (252) 462-0305						
Seeding Contractor	Mr. Robert Lucas						
Shamrock Environmental Corporation	P.O. Box 14987 Greensboro, NC 27415 (336) 375-1989						
Seed Mix Source	Mellow Marsh Farm, Inc. 1312 Woody Store Road Siler City, NC 27344 (919) 742-1200						
Nursery Stock Suppliers	ArborGen (International Paper) SC Supertree Nursery 5594 Highway 38 South Blenheim, SC 29516 (843) 528-3203						
	Mellow Marsh Farm, Inc. 1312 Woody Store Road Siler City, NC 27344 (919) 742-1200						
Monitoring Performer	Ecological Engineering, LLP 128 Raleigh Street Holly Springs, NC 27540 (919) 557-0929						
Stream Monitoring POC	G. Lane Sauls Jr.						
Vegetation Monitoring POC	G. Lane Sauls Jr.						

Exhibit Table IV. Project Background Table Ellington Branch Stream Restoration (Project No. 16-D06045)							
Project County	Warren County						
Drainage Area	1.1 sq. miles - Ellington Branch 0.1 sq. miles – Unnamed Tributary						
Impervious Cover Estimate	Less than 5%						
Stream Order	2 - Ellington Branch 1 – Unnamed Tributary						
Physiographic Region	Piedmont						
Ecoregion (Griffith and Omernik)	Northern Outer Piedmont						
Rosgen Classification of As-built	C5 - Ellington Branch C5 – Unnamed Tributary						
Cowardin Classification	RSB						
Dominant Soil Types	Wedowee Sandy Loam						
Reference Site ID	N/A						
USGS HUC for Project and Reference	03010106						
NCDWQ Sub-basin for Project and Reference	03-02-07						
Any Portion of any project segment 303d listed?	No						
Any portion of any project segment upstream of a 303d listed segment.	Yes						
Reason for 303d listing or stressor	Low DO, Sedimentation & Nutrients						
Percent of project easement fenced	100%						

The following pages depict the Monitoring Plan View drawings for Ellington Branch and its UT.

SECTION VI. PROJECT CONDITION AND MONITORING RESULTS

A. Vegetation Assessment

1. Soil Data

Based on available mapping for Warren County (NRCS, 2006), Wedowee soils underlie the entire easement area associated with the Project Site. These soils range in slope from five to 25 percent, depending on their position in the landscape. The Natural Resources Conservation Service (NRCS) is currently in the process of remapping the county and this data was assembled based on mapping provided by the County Soil Scientist. This mapping is not yet available in a published format.

Wedowee soils are classified by the NRCS as clayey, kaolinitic, thermic Typic hapludults. These soils are deep, well drained, moderately permeable soils that formed in residuum from weathered acid crystalline rock of the Piedmont plateau. They occur on narrow sides of ridges with slopes ranging from 8 to 40 percent (Hicks, 1980). The typical pedon, taken approximately eight miles south of the project in Vance County, exhibits an O, Ap, Bt and C horizon. The O horizon varies up to nearly 2 inches in depth and consists primarily of organic material. The Ap horizon is approximately 7 inches in depth and consists of brown, sandy loam. The clayey Bt horizon is 10 to 24 inches in thickness. It is colored yellowish red and is made up of sandy clay. A B3 horizon exists, which is similar in color to the Bt horizon. Its texture is sandy clay loam, clay loam or loam. The C horizon is yellowish red, reddish yellow, pale brown or red saprolite that crushes to sandy loam or sandy clay loam (Hicks, 1980). Exhibit Table V depicts preliminary soil data.

Exhibit Ta Ellington Branch St	ble V. Prelimin ream Restoration (v	45)		
Series	Max Depth (in.)	% Clay on Surface	K	Т	OM %
Wedowee sandy loam	72	0	0.24	2	0.5-1.5

2. <u>Vegetative Problem Areas</u>

Vegetative problem areas are defined as those areas either lacking vegetation or containing exotic vegetation and are generally categorized within the following categories: Bare Bank, Bare Bench, Bare Floodplain or Invasive Population. Based on the monitoring site assessment, no significant vegetation problem areas currently exist within the Project Site. There are however, isolated occurrences of invasive species. The occurrences consist mainly of scattered individuals, including fescue (*Festuca* sp.), Japanese grass (*Microstegium virmineum*), cattail (*Typha latifolia*) and Chinese privet (*Ligustrum sinense*). These areas are shown on the drawing entitled Problem Areas Plan View. Exhibit Table VI summarizes the observations for 2010. No other features or issues were identified during the surveys.

Fescue was initially observed during the winter months of 2009 and early spring months of 2010 along several fence lines separating the Project Site from the adjacent pasture areas. Its establishment is the likely result of wind and down-slope dispersal from the adjacent pastures. Ecological Engineering conducted spot-treatments with herbicide during March 2010. Although the treatments were successful at the time, site investigations using July revealed that fescue was still present in those areas. Spot treatments will again be conducted during the dormancy season to reduce the spread of fescue. It is anticipated that the overall growth and establishment of fescue will be diminished once there is ample shade within the easement area.

Japanese grass is present along the upstream portion of the UT, specifically in the vicinities of Cross Section #16 (Station Number 11+00). It has become established within the area either as a result from wind dispersal, bird

dispersal or via soil disturbance. Additional shading will help to minimize the spread of this species. This area has not increased in size and will continue to be monitored throughout the remainder of the monitoring period. Spot treatment with herbicide will be performed as necessary.

Cattails were observed in eight separate locales within the Project Site, specifically Station Numbers 16+25, 30+00, 31+75, 36+50, 44+25 and 46+25 along Ellington Branch and Station Numbers 16+00 and 20+00 along the UT. The occurrences were all scattered and individual counts were minimal. It is apparent that the establishment of cattails is a result of wind and/or bird dispersal. No other cattails were observed on the property. Low water levels and limited floodflows during 2008 and 2009 have allowed this species to become established. These areas will continue to be closely monitored throughout the 2010 growing season. Spot treatments with an aquatic herbicide will be performed during late 2010, as necessary.

Chinese privet was observed in limited numbers throughout the project area. A notable increase in individuals was noted between the 2008 and 2009 growing seasons. The majority of the individuals were spot treated during late April 2009. This treatment including lopping each stem and painting it with a concentrated systemic herbicide. Ecological Engineering will continue to monitor this species and will continue to perform spot treatments with herbicide as necessary.

Exhibit Table VI. Vegetative Problem Areas Ellington Branch Stream Restoration (Project No. 16-D06045)									
Feature/Issue	Station #/ Range	Probable Cause	Photo #						
Bare Bank	N/A	N/A	N/A						
Bare Bench	N/A	N/A	N/A						
Bare Floodplain	N/A	N/A	N/A						
	See Problem Area Plan View Drawing	Fescue: Surrounding seed sources	47, 48 & 49						
	See Problem Area Plan View Drawing	Microstegium: upstream and surrounding seed sources	32						
Invasive/Exotic			17, 18, 21,						
Populations	See Problem Area Plan View Drawing	Cattails: Surrounding seed sources	22, 27, 28,						
			50, 51 & 52						
	See Problem Area Plan View Drawing	Chinese Privet: Upstream and surrounding seed sources	50						

3. <u>Vegetative Problem Areas Plan View</u>

The following plan view drawings depict the locations of the potential vegetative problem areas at the Project Site.

4. <u>Stem Counts</u>

Stem counts were conducted within 13 strategically placed 10 meter-square plots. The plots were located based on a representative sample of the entire area of disturbance. They are scattered throughout the project area in order to cover the majority of the habitat variations. The stem count procedure only applies to planted and transplanted woody vegetation. This vegetation is denoted by bio-degradable flagging, which is replaced every monitoring year.

According to initial planting counts, stem counts within each of the 13 plots ranged from approximately 1,053 to 1,215 individuals per acre. The high number planted was in anticipation of mortality via the continuing drought. Monitoring counts for each plot are presented in Exhibit Table VII. As expected, mortality rates were heavy in the spring and summer months of 2008. These rates have lowered significantly between Year 2 and Year 3 based on normal rainfall amounts and their establishment of individual root systems.

Based on the results of the 2010 vegetation assessment, survivability counts were lower in ten of the 13 plots although well above the requirements set forth for mitigation monitoring. Stem counts ranged from approximately 405 stems per acre in Vegetation Plots 1 and 4 to approximately 1,134 stems per acre in Vegetation Plots 7 and 8. A complete breakdown of this information is provided in Appendix A-1.Photographs of each plot are presented in Appendix A-2.

Exhibit Table VII. Planted Stem Counts For Each Species Arranged By Plot Ellington Branch Stream Restoration (Project No. 16-D06045)																				
Species	_	Plots												Totals	(2008) Totals	09) Totals	(2010) Totals	(2011) Totals	(2012) Totals	al %*
Species	1	2	3	4	5	6	7	8	9	10	11	12	13	Initial Totals Year 1 (2008) To	Year 2 (2009)	Year 3 (20)	Year 4 (20	Year 5 (20	Survival	
Alnus serrulata			1											1	1	1	1			100
Asimina triloba														14	0	0	0			0
Betula nigra	6	7	3	1					23	7	21	13		86	84	82	81			94
Celtis laevigata														11	0	0	0			0
Cercis canadensis	1							1						11	7	7	2			18
Cornus florida														6	0	0	0			0
Diospyros virginiana			1			5	3							24	15	9	5			21
Fraxinus pennsylvanica		2	3				15	23				9		59	56	53	52			88
Nyssa sylvatica														13	1	1	0			0
Oxydendrum arboretum			6				3		2					15	13	13	11			73
Platanus occidentalis	3	2	4	1			6	3		8				36	32	30	27			75
Quercus alba					5	1							1	11	7	7	7			64
Quercus michauxii		5	1	8	6	15					2		2	51	46	41	39			76
Quercus phellos		2			5		1	1			1	1	11	26	25	22	22			85
Salix nigra			1											1	1	1	1			100

B. Stream Assessment

1. <u>Procedural Items</u>

Morphological criteria, including dimension and profile were assessed using the recommended procedures in the USACE Draft Stream Mitigation Guidelines (2003) document.

Cross sections were established in the vicinity of every 20 bankfull widths along both Ellington Branch and its UT. This resulted in a total of 15 cross sections along Ellington Branch and eight cross sections along its UT. Average distances between each cross section were approximately 250 and 150 linear feet for Ellington Branch and its UT, respectively. The cross sections were concentrated to riffle or pool locations along each channel. The chart below serves as a legend for each cross section. More detailed information is provided throughout the remainder of the report.

Ε	llington Brand	ch	UT to	Ellington Br	anch
Cross Section Number	Morphologic Parameter	Station Number	Cross Section Number	Morphologic Parameter	Station Number
1	Pool	10+67	16	Pool	10 + 95
2	Riffle	13 + 85	17	Riffle	12 + 35
3	Pool	16 + 25	18	Pool	13 + 75
4	Riffle	18 + 74	19	Riffle	15 + 39
5	Pool	21+47	20	Pool	16 + 82
6	Riffle	25+04	21	Riffle	18+64
7	Riffle	28+23	22	Pool	19+73
8	Pool	29+74	23	Riffle	22+36
9	Pool	31+88			
10	Riffle	34+10			
11	Pool	36+55			
12	Riffle	38+49			
13	Pool	40+99			
14	Riffle	44+22			
15	Pool	46+79			

Restoration activities at the Project Site exceeded 3,000 linear feet. According to USACE (2003), profile surveys are to be conducted on only 3,000 linear feet or 30% of the project total, whichever greater. Ecological Engineering established six total profile segments to be annually reviewed as part of this monitoring assessment. Two of the segments are situated along Ellington Branch upstream of its confluence with the UT, two are downstream and two are along the UT. Lengths vary from approximately 300 to 800 feet in length. A legend is provided for each profile segment in the chart below.

Segment	Length	Location
Profile Reach 1	655 feet	Ellington Branch Stations 10+20 to 16+75 (upstream of confluence with UT)
Profile Reach 2	534 feet	Ellington Branch Stations 18+62 to 23+96 (upstream of confluence with UT)
Profile Reach 3	752 feet	Ellington Branch Stations 29+33 to 36+85 (downstream of confluence with UT)
Profile Reach 4	347 feet	Ellington Branch Stations 43+49 to 46+96 (downstream of confluence with UT)
Profile Reach 5	494 feet	UT to Ellington Branch Stations 12+03 to 16+97
Profile Reach 6	291 feet	UT to Ellington Branch Stations 19+02 to 21+93

2. <u>Hydrologic Criteria</u>

Bankfull events during the monitoring period are being documented via a crest gage. In order to meet hydrologic success criteria, a minimum of two events must occur during the five-year monitoring period. In addition, the events must occur in separate monitoring years. A crest gage was installed along Ellington Branch at Cross Section #6 immediately after construction was completed in June 2007. The gage was visited monthly during the period leading up to the submittal this document. Based on our findings, one bankfull event has occurred to-date during 2010. Specific information regarding this and past events is depicted in Exhibit Table VIII. In addition, precipitation data from two nearby weather stations is presented in Appendix B.

Since bankfull events were recorded during both 2008 and 2009, the hydrologic requirements associated with mitigation have been fulfilled at the Project Site. Ecological Engineering will however, continue to monitor the hydrology throughout the subsequent monitoring years in order to provide a quantitative data comparison.

	Exhibit Table VIII. Verification of Bankfull Events Ellington Branch Stream Restoration (Project No. 16-D06045)											
Date of Data Collection	Date(s) of Occurrence	Method	Calculated Bankfull Elevation	Measured High Water Elevation	Photo # (if available)							
9/9/08	9/5/08 - 9/6/08	Crest gage	13 inches	17 inches	Not available							
1/8/09	1/6/09 - 1/9/09	Crest gage	13 inches	17 inches	Not available							
3/11/09	3/1/09 - 3/2/09	Crest gage	13 inches	20 inches	Not available							
9/22/09	9/7/09 - 9/8/09	Crest gage	13 inches	14 inches	Not available							
11/20/09	11/11/09 - 11/14/09	Crest gage	13 inches	24 inches	Not available							
3/19/10	2/5/10 - 2/6/10	Crest gage	13 inches	16 inches	Not available							

3. Bank Stability Assessments

Bank Erosion Hazard Index (BEHI) and Near Bank Shear Stress (NBS) analyses were performed as part of the Year 3 monitoring assessment. The results were compared to pre-construction estimates. Based on this comparison, sediment exports rates at the Project Site have been significantly reduced as a result of restoration activities. These rates and estimates are based on the proportion of bank footage in the various hazard categories contributing or producing sediment export rates in tonnage per annum. The data comparison is provided in Table IX. The data will be evaluated again during the Year 5 monitoring assessment.

Based on the sediment export comparisons in Table IX, restoration activities have been successful to date at the Project Site. The full scale stream restoration (dimension, pattern and profile) have resulted in lowering sediment export rates by approximately 98.5 percent on Ellington Branch and approximately 99 percent on its UT. As a result, the project has met its intended goals, which include restoration of primary stream and buffer functions and values.

	PointReach*LF*ExtremeVery HighHighModerateLowLowLowExtremeVery HighImage: line line line line line line line line															
		LF*)W			Sediment Export	
			ft	%	ft	%	ft	%	ft	%	ft	%	ft	%	Ton/y	
Pre-const.		1500					1500	37							44.9	
Pre-const.		2550			2550	63									682.8	
								1			Total fo	r Elling	ton Br	anch	727.7	
Pre-const.	Ellington	853	853	100											217.8	
	Total for the Unnamed Tributary of Ellington Branch 2 ime Segment/ L Extreme Very High High Moderate Low Very Sed															
	0	LF	Extreme Very High High Moderate Low Very Low													
			ft	%	ft	%	ft	%	ft	%	ft	%	ft	%	Ton/y	
		1500					75	2			1425	35			3.48	
		2550										63			5.92	
	•										Total fo	r Elling	ton Br	anch	9.40	
Year 3 (2010)	UT of Ellington Branch	853									853	100			1.98	
	•						Total f	or the	Unnam	ed Tri	butary o	f Elling	ton Br	anch	1.98	
Time Point	Segment/ Reach	LF	Extr	eme	Very	High	Hig	h	Mode	erate	Lo)W		ery ow	Sediment Export	
			ft	%	ft	%	ft	%	ft	%	Ft	%	ft	%	Ton/y	
Year 5 (2012)	EB - u/s of conf.	1500													N/A	
Year 5 (2012)	EB – d/s of conf.	2550													N/A	
	•										Total fo	r Elling	ton Br	anch	N/A	
Year 5 (2012)	UT of Ellington Branch	853													N/A	
							Total f	or the	Unnam	ed Tri	butary o	of Elling	ton Br	anch	N/A	

Key: Segment/Reach

EB - u/s of conf. = Ellington Branch upstream of its confluence with the UT

EB - d/s of conf. = Ellington Branch downstream of its confluence with the UT

LF = linear feet

4. <u>Stream Problem Areas</u>

No significant changes to the dimension, pattern, profile or bed material along either channel were observed. Location surveys of the constructed features were conducted to verify the performance of the two stream channels. Both Ellington Branch and its UT are stable. All of the structures are functioning as designed and bank erosion is non-existent. Lack of flow and lack of ongoing scouring events during 2008 and 2009 have contributed to dense vegetation establishment within both stream channels and their adjacent streambanks. Currently, these conditions have contributed to the overall success of the project; however, they may actually become a future deterrent for sediment transport. Ecological Engineering will continue to monitor this situation.

Based on the cross-section surveys, longitudinal profile surveys and visual observations, the channel dimensions and profiles have remained stable. Minor adjustments were noted, mainly with regard to the longitudinal profiles. These adjustments are evident on the profiles referenced as part of Appendix C; however, overall morphology has remained consistent and features are easily distinguished. Exhibit Table X is provided for future problem area identification and descriptions, if necessary. No data is currently available for insertion into the table. More overall information regarding issues with either of the stream channels is presented in the following sections. The Table in Appendix C-1 provides information pertaining to the visual assessment. This information is also summarized in Section VI.B.6.

	Exhibit Table X. S	tream Problem Areas	
Ell	ington Branch Stream Res	toration (Project No. 16-D06045)	
Feature Issue	Station Numbers	Suspected Cause	Photo Number
N/A	N/A	N/A	N/A

Evidence of beaver (*Castor canadensis*) was observed during June and July 2009 along the extreme lower portion of Ellington Branch. This evidence included a small dam in the vicinity of Station 47+20. Ecological Engineering and Sungate coordinated with Mr. Anthony Steed, US Department of Agriculture Wildlife Services, to remove the beavers from the project area. Mr. Steed was able to successfully remove the beavers in their entirety in early August 2009. No visual damage, other than the ponding of water was noted as a result of the dam, located immediately downstream of Reach Profile #4. No evidence of beaver was observed during the 2010 monitoring assessment.

During the winter months of 2009, the standpipe associated with the irrigation pond immediately upstream of the easement area associated with the UT became clogged with an unknown substance. As a result, excess water draining from the pond utilized the auxiliary or emergency spillway situated along the southeastern corner of the dam. In November 2009, the site received between four and five inches of rain during one storm event. The resulting flows were forced into and outside of the auxiliary spillway. The majority of these flows were scattered along and through the adjacent pasture, immediately south of the easement area. A portion of the flows however, did enter the easement area in the vicinity of Cross Section #16. While the side slopes remained stable, a scour hole was created adjacent to the channel in the vicinity of a natural spring. The result was an expanded hole approximately two feet deep. The property owner installed a new pipe into the existing dam during the month of April 2010. This pipe currently facilitates proper drainage from the pond. The expanded scour hole was closely inspected during the 2010 monitoring assessment. It is stable as well as its surrounding side slopes. No additional work or studies are warranted at the current time. Pictures of this area are provided in Appendix C-2.

5. <u>Fixed Station Photographs</u>

Photographic documentation was taken at each of the 23 cross sections. This documentation included views across the actual cross section and views facing downstream. The photographs are provided in Appendix C-2 in sequential order. In addition, annual photographic comparisons have been provided.

6. <u>Visual Stability Assessment</u>

Exhibit Table XI provides a semi-qualitative summary of results from the visual inspection conducted over each of the three reaches. It provides a simple performance percentage depicting the state of stability as a proportion of the total amount of the morphological feature category. Based on the overall results and comparison with the asbuilt surveys, morphological adjustments did occur along all six monitoring segments. These adjustment can be attributed to the "normal" precipitation amounts received over the fall and winter of 2009, as well as the spring and early summer of 2010. Vegetation along the channels was removed and/or displaced as a result of these flows. This resulted in much needed sediment transport and scour along areas of streambed. Morphological features were maintained for the most part, with the creation and/or transformation of several features. The streambed, streambanks and associated bankfull benches appeared stable throughout the entire reach of both streams. Visual evidences of instability were non-existent since the majority of both channels remain well vegetated. Based on the assessment and interpreted data along all three reaches, the project is stable.

			Feature Visual ation (Project No. 2		essment	
Reach 1 – Ellington Branch Upstr	eam of Confluenc	e with Unname	d Tributary (Profil	e Reaches 1 and	12)	
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100%	100%	100%	100%		
Pools	100%	95%	95%	95%		
Thalweg	100%	100%	100%	100%		
Meanders	100%	100%	100%	100%		
Bed General	100%	99%	99%	99%		
Vanes	100%	100%	100%	100%		
Rootwads and Boulders	100%	100%	100%	100%		
Reach 2 – Ellington Branch Down	stream of Conflu	ence with Unna	med Tributary (Pro	ofile Reaches 3 a	and 4)	•
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100%	100%	100%	100%		
Pools	100%	100%	100%	100%		
Thalweg	100%	100%	100%	100%		
Meanders	100%	100%	100%	100%		
Bed General	100%	96%	96%	95%		
Vanes	100%	100%	100%	100%		
Rootwads and Boulders	100%	100%	100%	100%		
Reach 3 – Unnamed Tributary (Pr	ofile Reaches 5 a	nd 6)				
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100%	100%	100%	95%		
Pools	100%	90%	85%	90%		
Thalweg	100%	100%	100%	100%		
Meanders	100%	100%	100%	100%		
Bed General	100%	97%	97%	98%		
Vanes						
Rootwads and Boulders						

7. <u>Stream Qualitative Measures</u>

Qualitative summary data including cross-sectional survey, longitudinal profile survey and pebble count information is provided in Exhibit Tables XII and XIII. The associated raw data and plots are provided in Appendices C-3, C-4 and C-5.

Bankfull differences were noted during this monitoring assessment. As previously discussed, a record drought during the spring and summer months of 2008 effected this and many surrounding areas. Ellington Branch and its UT did not have much opportunity for adjustment. Lack of normal channel flows allowed for an influx of wetland vegetation throughout both of these channels. The early months of 2009 witnessed more normal rain events and precipitation amounts. As a result, the two channels were able to continue the adjustment process, normally occurring during the first year after construction implementation. The summer of 2009 however, was dry with lower than average precipitation amounts occurring in this area. Nearby irrigation activities further depleted normal channel flows and current conditions appeared similar to those observed during 2008. The fall and winter months of 2009 and early months of 2010 have exhibited more normal rainfall events. A large bankfull event in November 2009 allowed for additional channel adjustment. The most recent visual assessment of the cross sections revealed little to no instability or scour, although survey data noted minor changes with the bankfull widths at several cross sections. These observations were most evident at Cross Sections 10 and 21. Cross Section 10 exhibited an increase in width of approximately two feet while the width at Cross Section 21 decreased nearly five feet. These changes can be attributed to differences in vegetation density, survey rod placement, lack of flow and normal channel adjustment processes. Bankfull elevations were based on visual observations, which differed from previous years. Bankfull areas however, have remained consistent.

In addition, differences in the longitudinal profiles were also noted along the monitored reaches. The most obvious was an approximately six-inch drop in elevation along Profile Reach 2 between Stations 22+50 and 23+60. The down cutting likely occurred during the bankfull events recorded between the Year 2 and Year 3 surveys and resulted from the removal of excess vegetation within active channel. The area has been under drought conditions since project implementation in 2008. Herbaceous and aquatic vegetation had become established throughout the active channel. Rain events during the winter of 2009 and spring of 2010 have been responsible for "flushing" some of this vegetation from within the active channel. It is likely under normal conditions that vegetation is restricted primarily to the adjacent banks and areas of slow moving water. The channel was stable along Reach 2 and based on the visual assessment, in-stream vegetation was limited which confirms this assumption. Ecological Engineering will continue to monitor this profile to ensure that it does not become unstable.

	Exhil		le XII.							mary					
	Reac		gton Bran ngton Br							utarv					
Parameter		isting Co	Ŭ	Proj St	ect Refer ream – U Ellingtor	rence J T	Proj	ect Refe am – Hav Creek	rence	<u></u> y	Design			As-Buil	t
Dimension	Min.	Max.	Med.	Min.	Max.	Med.	Min.	Max.	Med.	Min.	Max.	Med.	Min.	Max.	Med.
BF Width (ft)	7.4	11.5	9.5	4.1	4.1	4.1	7.7	9.3	8.9			14.5	10.1	13.4	11.8
Floodprone Width (ft)	10.5	18.6	14.6	6.5	7.9	7.2	15.8	32.5	24.2			>50.0	33.0	50.0	42.0
BF Cross-Sect. Area (ft ²)	10.2	10.2	10.2	2.5	2.6	2.6	9.7	9.8	9.8			18.3	7.0	12.1	10.0
BF Mean Depth (ft)	0.9	1.4	1.1	0.6	0.6	0.6	1.0	1.3	1.1			1.3	0.6	1.0	0.9
BF Max. Depth (ft)	1.7	1.8	1.7	1.0	1.0	1.0	1.5	1.8	1.7			1.8	1.1	1.6	1.3
Width/Depth Ratio	5.4	12.9	8.6	6.5	6.7	6.6	6.1	10.3	8.1			11.2	11.6	20.2	13.9
Entrenchment Ratio	1.4	1.6	1.5	1.6	1.9	1.8	1.8	3.7	2.7			>3.0	2.8	4.2	3.6
Wetted Perimeter (ft)			12.9			5.3			11.5			17.1	9.3	13.8	11.4
Hydraulic Radius (ft)			1.4			0.5			0.9			1.1	0.7	0.9	0.8
Pattern															
Channel Beltwidth (ft)	19.9	90.5	42.1			19.1	15.5	39.1	28.8	23.7	74.0	41.8	33.5	92.0	62.0
Radius of Curvature. (ft)	8.4	70.0	26.0	1.4	7.2	3.4	4.0	10.6	7.6	24.0	50.0	30.8	18.0	47.0	30.8
Meander Wavelength (ft)	21.3	87.8	41.3	2.5	10.4	5.1	10.2	23.2	15.2	68.7	164.2	104.5	74.0	150.0	102.5
Meander Width Ratio	2.1	9.5	4.4			4.7	1.8	4.4	3.3	1.6	5.1	2.9	2.8	7.8	5.3
Profile															
Riffle Length (ft)	5.3	45.8	25.5	1.6	12.2	6.3	3.1	10.6	6.1			10.0			10.0
Riffle Slope (ft)	0.007	0.049	0.022	0.009	0.088	0.035	0.011	0.018	0.014			0.015	0.012	0.039	0.028
Pool Length (ft)	11.6	85.7	25.4			3.9	4.9	27.9	15.0	13.0	45.0	26.4	13.1	39.1	23.6
Pool Spacing (ft)	33.4	823.7	111.3			22.6	20.9	56.3	34.6	34.0	125.0	60.1	36.8	119.1	81.7
Substrate															
d50 (mm)			1.2			1.8			0.3			1.2			0.2
d84 (mm)			10.2			10.2			10.9			10.2			0.8
Additional Reach Parameters															
Valley Length (ft)			1119			33			156			1586			1586
Channel Length (ft)			1560			50			258			1943			1934
Sinuosity			1.4			1.5			1.7			1.3			1.2
Water Surface Slope (ft/ft)			0.004			0.013			0.007			0.006			0.006
BF Slope (ft/ft)			0.004			0.013			0.007			0.006			0.006
Rosgen Classification			G5			B4c			E5			C5			C5

Exhibit T		Elling	ton Bran	ch Strea	m Resto	ration (I	Project N	lo. 16-D()6045)	·	Continu	ıed			
	Reach	2 – Ellin	gton Bra							ibutary					
Parameter	Pre-Ex	isting Co	ondition	St	ect Refei ream – U Ellingtor	JT		ect Refer am – Hav Creek			Design			As-Built	t
Dimension	Min.	Max.	Med.	Min.	Max.	Med.	Min.	Max.	Med.	Min.	Max.	Med.	Min.	Max.	Med.
BF Width (ft)	9.2	11.9	10.6	4.1	4.1	4.1	7.7	9.3	8.9			15.5	11.6	16.6	14.9
Floodprone Width (ft)	27.7	193.0	110.3	6.5	7.9	7.2	15.8	32.5	24.2			>50.0	40.0	58.0	47.7
BF Cross-Sect. Area (ft ²)	12.4	13.8	13.1	2.5	2.6	2.6	9.7	9.8	9.8			21.6	11.6	16.6	14.3
BF Mean Depth (ft)	1.0	1.5	1.2	0.6	0.6	0.6	1.0	1.3	1.1			1.4	0.8	1.2	1.0
BF Max. Depth (ft)	2.1	2.2	2.2	1.0	1.0	1.0	1.5	1.8	1.7			2.0	1.6	1.9	1.7
Width/Depth Ratio	6.1	11.4	8.5	6.5	6.7	6.6	6.1	10.3	8.1			11.1	10.6	20.1	15.5
Entrenchment Ratio	2.3	20.8	10.4	1.6	1.9	1.8	1.8	3.7	2.7			>3.2	2.7	3.9	3.2
Wetted Perimeter (ft)			16.64			5.3			11.5			18.3	13.0	15.5	14.6
Hydraulic Radius (ft)			1.3			0.5			0.9			1.2	0.8	1.1	0.93
Pattern															
Channel Beltwidth (ft)	22.5	64.0	37.5			19.1	15.5	39.1	28.8	20.7	71.1	47.3	51.0	122.0	75.8
Radius of Curvature. (ft)	7.7	67.6	23.3	1.4	7.2	3.4	4.0	10.6	7.6	24.0	47.8	30.1	22.0	66.0	33.4
Meander Wavelength (ft)	14.0	90.2	34.9	2.5	10.4	5.1	10.2	23.2	15.2	70.5	151.9	110.0	83.8	168.0	111.4
Meander Width Ratio	2.1	6.0	3.5			4.7	1.8	4.4	3.3	1.3	4.6	3.1	3.4	8.2	5.1
Profile															
Riffle Length (ft)	4.5	47.9	25.5	1.6	12.2	6.3	3.1	10.6	6.1			10.0	10.0	10.0	10.0
Riffle Slope (ft)	0.007	0.052	0.022	0.009	0.088	0.035	0.011	0.018	0.014			0.015	0.016	0.035	0.024
Pool Length (ft)	11.6	85.7	25.4			3.9	4.9	27.9	15.0	9.0	50.0	23.1	14.3	32.2	24.1
Pool Spacing (ft)	33.4	823.7	111.3			22.6	20.9	56.3	34.6	40.0	103.0	72.9	38.3	147.4	75.6
Substrate															
d50 (mm)			0.41			1.8			0.3			0.4			0.2
d84 (mm)			4.0			10.2			10.9			10.0			4.5
Additional Reach Parameters															
Valley Length (ft)			1846			33			156			1370			1370
Channel Length (ft)			2476			50			258			1810			1801
Sinuosity			1.3			1.5			1.7			1.3			1.3
Water Surface Slope (ft/ft)			0.006			0.013			0.007			0.006			0.006
BF Slope (ft/ft)			0.006			0.013			0.007			0.006			0.006
Rosgen Classification			E5			B4c			E5			C5			C5

Exh	ibit Ta		. Baseli ton Bran							Contin	nued				
			Reach 3 -												
Parameter	Pre-Ex	isting Co		Proj St	ect Refer ream – U Ellingtor	rence UT	Proj	ect Refe am – Hav Creek	rence		Design			As-Buil	t
Dimension	Min.	Max.	Med.	Min.	Max.	Med.	Min.	Max.	Med.	Min.	Max.	Med.	Min.	Max.	Med.
BF Width (ft)	8.3	14.5	11.4	4.1	4.1	4.1	7.7	9.3	8.9			8.0	6.9	9.3	7.7
Floodprone Width (ft)	15.8	34.0	24.9	6.5	7.9	7.2	15.8	32.5	24.2			>30.0	22.0	29.0	27.0
BF Cross-Sect. Area (ft ²)	4.7	6.4	5.6	2.5	2.6	2.6	9.7	9.8	9.8			4.5	4.1	6.0	4.9
BF Mean Depth (ft)	0.4	0.6	0.5	0.6	0.6	0.6	1.0	1.3	1.1			0.6	0.6	0.7	0.7
BF Max. Depth (ft)	0.7	1.1	0.9	1.0	1.0	1.0	1.5	1.8	1.7			0.8	0.9	1.0	1.0
Width/Depth Ratio	14.7	32.9	23.8	6.5	6.7	6.6	6.1	10.3	8.1			13.3	10.5	14.4	11.8
Entrenchment Ratio	1.4	3.0	2.2	1.6	1.9	1.8	1.8	3.7	2.7			>3.7	2.9	3.8	3.5
Wetted Perimeter (ft)			12.4			5.3			11.5			9.2	6.5	8.4	7.6
Hydraulic Radius (ft)			0.5			0.5			0.9			0.5	0.4	0.6	0.53
Pattern															
Channel Beltwidth (ft)	19.8	67.0	40.0			19.1	15.5	39.1	28.8	11.4	42.5	23.3	36.7	60.0	47.7
Radius of Curvature (ft)	11.1	58.4	33.5	1.4	7.2	3.4	4.0	10.6	7.6	13.0	25.0	17.3	13.3	28.3	18.2
Meander Wavelength (ft)	23.7	87.0	44.1	2.5	10.4	5.1	10.2	23.2	15.2	29.7	97.8	61.7	44.0	95.0	56.0
Meander Width Ratio	1.7	5.9	3.5			4.7	1.8	4.4	3.3	1.4	5.3	2.9	4.8	7.8	6.2
Profile															
Riffle Length (ft)	13.8	58.0	27.4	1.6	12.2	6.3	3.1	10.6	6.1			5.0	5.0	5.0	5.0
Riffle Slope (ft)	0.005	0.029	0.019	0.009	0.088	0.035	0.011	0.018	0.014			0.02	0.012	0.039	0.025
Pool Length (ft)			17.2			3.9	4.9	27.9	15.0	10.0	21.0	14.0	9.2	36.0	15.7
Pool Spacing (ft)						22.6	20.9	56.3	34.6	27.0	89.0	51.0	19.7	86.3	44.2
Substrate															
d50 (mm)			0.4			1.8			0.3			0.4			0.3
d84 (mm)			11.8			10.2			10.9			11.8			0.6
Additional Reach Parameters															
Valley Length (ft)			702			33			156			1074			1074
Channel Length (ft)			854			50			258			1343			1328
Sinuosity			1.2			1.5			1.7			1.3			1.3
Water Surface Slope (ft/ft)			0.008			0.013			0.007			0.009			0.008
BF Slope (ft/ft)			0.008			0.013			0.007			0.009			0.008
Rosgen Classification			C5			B4c			E5			C5			C5

			Ex						d Hyd ration (1			oring S	umma	ry						
		Cro Pool (El	ss Sectio	on 1			Cro	oss Secti	,			,	ss Section]	Cro Riffle (E	ss Section)
Dimension	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	12.9	12.7	7.5			8.9	7.0	7.6			15.5	14.1	10.8			10.0	11.7	11.8		
Floodprone Width (ft)						33.0	30.8	34.6								50.0	52.1	51		
BF Cross-Sect. Area (ft ²)	21.6	13.6	18.2			6.4	5.2	5.3			24.9	22.5	19.6			7.7	9.6	9.4		
BF Mean Depth (ft)	1.7	1.1	2.4			0.7	0.7	0.7			1.6	1.6	1.8			0.8	0.8	0.8		
BF Max. Depth (ft)	3.3	2.4	4.2			1.0	1.2	1.7			3.2	3.1	3.0			1.2	1.5	1.6		
Width/Depth Ratio						12.7	10.0	10.9								12.5	14.6	14.7		
Entrenchment Ratio						3.7	4.4	4.6								5.0	4.5	4.3		
Wetted Perimeter (ft)	15.8	15.0	12.6			9.3	7.5	8.7			16.9	15.6	12.6			10.4	12.1	12.4		
Hydraulic Radius (ft)	1.4	0.9	1.4			0.7	0.7	0.6			1.5	1.4	1.6			0.7	0.8	0.8		
Substrate																				
d50 (mm)	0.2	0.2	0.2			0.3	0.3	0.3			0.3	0.3	0.3			0.3	0.2	0.3		
d84 (mm)	0.3	0.3	0.3			3.6	0.8	1.0			1.2	3.0	1.0			0.7	0.6	0.7		
		Cro	ss Sectio	on 5			Cro	oss Secti	on 6			Cro	ss Section	on 7			Cro	ss Section	on 8	
		Pool (El	lington I	Branch)]	Riffle (E	llington	Branch)]	Riffle (E		Branch)		Pool (El	lington	Branch)	
Dimension	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	22.2	22.1	17.1			11.6	11.5	11.8			13.4	13.2	14.4			16.6	18.1	17.7		
Floodprone Width (ft)						38.0	36.2	36.7			46.0	48.5	54.5							
BF Cross-Sect. Area (ft ²)	18.0	18.7	19.5			11.0	11.5	10.8			12.6	11.1	13.8			19.3	22.1	23.5		
BF Mean Depth (ft)	0.8	0.8	1.1			0.9	0.9	0.9			0.9	0.8	1.0			1.2	1.2	1.3		
BF Max. Depth (ft)	2.3	2.4	2.9			1.4	1.3	1.5			1.5	1.5	1.9			2.5	2.7	2.8		
Width/Depth Ratio						12.9	12.8	13.0			14.9	16.5	15.2							
Entrenchment Ratio						3.3	3.1	3.1			3.4	3.7	3.8							
Wetted Perimeter (ft)	23.6	23.4	18.8			12.2	12.0	12.4			13.8	13.6	15.2			18.1	19.8	19.4		
Hydraulic Radius (ft)	0.8	0.8	1.0			0.9	0.9	0.9			0.9	0.8	0.9			1.1	1.1	1.2		
Substrate																				
d50 (mm)	0.2	0.1	0.1			0.1	0.2	0.1			2.6	3.5	2.6			0.2	0.1	0.2		
d84 (mm)	0.6	0.2	0.6			0.2	0.3	0.2			6.8	7.8	7.0			0.3	0.3	0.3		

		E	xhibit '										ary Co	ontinue	d					
_					Ellingto	on Branc			ration (l	Project I	No. 16-D									
Parameter			ss Sectio					ss Sectio					ss Sectio					ss Sectio		
		Pool (El			1		1		Branch					Branch)			Riffle (E	0	-	/
Dimension	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	15.2	13.3	12.9			14.9	14.8	17.1			25.5	21.6	24.7			12.0	11.3	11.9		
Floodprone Width (ft)						45.0	>50	>50								58.0	>60	>60		
BF Cross-Sect. Area (ft ²)	23.1	21.0	20.6			12.1	11.3	13.0			28.3	21.0	17.3			13.9	12.4	13.8		
BF Mean Depth (ft)	1.5	1.6	1.6			0.8	0.8	0.8			1.1	1.0	0.7			1.2	1.1	1.2		
BF Max. Depth (ft)	2.8	2.6	2.9			1.7	1.7	1.8			3.2	2.8	2.6			2.0	1.8	2.1		
Width/Depth Ratio						18.2	18.5	22.4								10.0	10.3	10.2		
Entrenchment Ratio						3.0	>3.4	>2.9								4.8	>4.8	>5.0		
Wetted Perimeter (ft)	16.6	14.6	14.3			15.5	15.6	17.7			27.8	24.2	26.5			13.0	11.9	12.7		
Hydraulic Radius (ft)	1.4	1.4	1.4			0.8	0.7	0.7			1.0	0.9	0.7			1.1	1.0	1.1		
Substrate																				
d50 (mm)	0.2	0.2	0.2			0.1	0.3	0.1			0.2	0.2	0.2			0.2	0.2	0.4		
d84 (mm)	0.4	0.4	0.4			2.0	0.4	2.0			0.3	0.3	0.4			1.5	0.3	1.0		
Parameter		Cros	ss Sectio	n 13			Cros	ss Sectio	on 14			Cros	ss Sectio	on 15			Cros	ss Sectio	n 16	
		Pool (El	lington I	Branch)]	Riffle (E	llington	Branch)		Pool (El	lington	Branch)		P	ool (Unr	named T	ributar	y)
Dimension	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	23.6	23.4	23.1			14.1	12.6	13.2			18.9	21.5	23.1			13.7	17.6	18.4		
Floodprone Width (ft)						40.0	39.0	39.4												
BF Cross-Sect. Area (ft ²)	26.5	26.9	31.6			13.2	9.5	10.8			27.8	30.1	26.3			11.0	12.8	16.5		
BF Mean Depth (ft)	1.1	1.1	1.4			0.9	0.8	0.8			1.5	1.4	1.1			0.8	0.7	0.9		
BF Max. Depth (ft)	2.8	3.4	3.6			2.2	1.9	1.9			3.7	3.4	2.6			1.8	1.2	1.8		
Width/Depth Ratio						15.7	15.7	16.0												
Entrenchment Ratio						2.8	3.1	3.0												
Wetted Perimeter (ft)	24.6	25.7	26.1			15.2	13.8	14.1			20.8	23.0	24.3			14.6	17.9	19.2		
Hydraulic Radius (ft)	1.1	1.0	1.2			0.9	0.7	0.8			1.3	1.3	1.1			0.8	0.7	0.9		
Substrate																				
d50 (mm)	0.4	0.2	0.2			0.6	0.5	0.6			0.2	0.2	0.1			0.6	0.2	0.6		
d84 (mm)	1.1	0.5	0.4			1.9	0.8	2.0			0.3	0.2	0.2			1.8	0.3	1.8		

		E	xhibit '						draulic ration (1				ary Co	ontinue	d					
Parameter	Ri		ss Sectio named 7	n 17	Ŭ		Cro	ss Sectio		ž			s Section named [.y)	Р	Cros ool (Unr	ss Sectio named T		y)
Dimension	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	6.2	6.7	5.1			9.4	8.2	7.4			6.8	7.9	7.2			9.2	7.9	5.9		
Floodprone Width (ft)	22.0	19.9	15								29.0	27.5	28.3							
BF Cross-Sect. Area (ft ²)	2.7	3.2	1.2			7.2	6.5	5.3			4.0	3.9	3.8			7.2	6.8	6.6		
BF Mean Depth (ft)	0.4	0.5	0.2			0.8	0.8	0.7			0.6	0.5	0.5			0.8	0.9	1.1		
BF Max. Depth (ft)	0.8	0.8	0.5			1.8	1.6	1.4			0.8	0.9	0.9			2.1	2.1	2.0		
Width/Depth Ratio	14.1	13.4	22.3								11.5	15.8	13.7							
Entrenchment Ratio	3.6	3.0	2.9								4.3	35	3.9							
Wetted Perimeter (ft)	6.5	7.3	5.2			10.8	9.7	8.5			7.1	8.2	7.5			10.6	9.5	7.7		
Hydraulic Radius (ft)	0.4	0.4	0.2			0.7	0.7	0.6			0.6	0.5	0.5			0.7	0.7	0.9		
Substrate																				
d50 (mm)	0.3	0.2	0.3			0.3	0.2	0.3			0.2	0.2	0.2			0.2	0.2	0.2		
d84 (mm)	0.6	0.3	0.6			0.5	0.3	0.4			0.4	0.3	0.4			0.4	0.4	0.4		
Parameter			ss Sectio					ss Sectio					ss Sectio							
			named]						[ributar			iffle (Un							1	
Dimension	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	7.9	11.9	6.0			14.5	15.6	14.7			8.0	9.4	9.3							
Floodprone Width (ft)	29.0	27.9	28.5								28.0	29.0	40							
BF Cross-Sect. Area (ft ²)	4.1	4.0	3.4			10.3	10.8	11.6			4.9	6.4	10.2							
BF Mean Depth (ft)	0.5	0.34	0.6			0.7	0.7	0.8			0.6	0.7	1.1							
BF Max. Depth (ft)	0.9	0.9	0.8			1.5	1.5	1.7			1.2	1.2	2.2							
Width/Depth Ratio	15.8	35.0	10.9								12.9	13.4	8.5							
Entrenchment Ratio	3.7	2.4	4.7								3.5	3.1	4.3							
Wetted Perimeter (ft)	8.3	12.1	6.4			14.9	16.1	15.3			8.4	9.8	10.7							
Hydraulic Radius (ft)	0.5	0.3	0.5			0.7	0.7	0.8			0.6	0.7	1.0							
Substrate																				
d50 (mm)	0.3	0.3	0.3			0.3	0.1	0.3			0.3	0.2	0.3							
d84 (mm)	1.5	0.4	1.5			0.6	0.2	0.6			0.4	0.4	0.4							

		Exhibi	t Table							ring Su 5. 16-D06		y Conti	inued					
	Re	ach 1 – 1	Ellington	Branch	Upstrea	m of Co	ifluence	with Un	named T	'ributary	(Profile	Reaches	1 and 2)	1				
Parameter	M	Y 1 (20	08)	M	Y 2 (20	09)	M	Y 3 (20	10)	MY	7 4 (201	l1)	M	Y 5 (20	12)	MY	Y + (20)	12)
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)	33.5	92.0	62.0	33.0	91.0	66.3	34.0	91.0	61.0									
Radius of Curvature (ft)	18.0	47.0	30.8	19.0	45.3	29.3	18.0	47.0	31.8									
Meander Wavelength (ft)	74.0	150.0	102.5	76.0	152.0	110.7	75.0	147.0	114.5									
Meander Width Ratio	2.8	7.8	5.3	2.7	7.5	5.5	3.5	9.4	6.3									
Profile																		
Riffle Length (ft)	9.5	20.0	15.8	9.5	21.8	13.5	11.4	20.3	15.2									
Riffle Slope (ft/ft)	0.004	0.028	0.01	0.004	0.020	0.009	0.005	0.020	0.013									
Pool Length (ft)	11.0	67.1	23.2	12.8	57.0	24.1	15.0	50.0	29.3									
Pool Slope (ft/ft)	0.000	0.006	0.001	0.000	0.007	0.002	0.000	0.006	0.002									
Additional Reach Parameters																		
Valley Length (ft)		1586			1586			1586										
Channel Length (ft)		1934			1934			1934										
Sinuosity	6							1.22										
Water Surface Slope (ft/ft)		0.007			0.007			0.007										
BF Slope (ft/ft)		0.007			0.007			0.007										
Rosgen Classification		C5			C5			C5										

			t Table llington F	Ellingt	on Bran	ch Strear	n Restor	ration (P	roject No	o. 16-D06	045)			4)				
Parameter		en 2 – El Y 1 (20	× ·		Y 2 (20			Y 3 (20)			7 4 (201			+) Y 5 (20	12)	MY	Z + (20	12)
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)	51.0	122.0	75.8	51.0	128.0	85.8	52.3	123.5	86.1									
Radius of Curvature (ft)	22.0	66.0	33.4	22.7	66.0	33.0	22.6	66.0	30.7									
Meander Wavelength (ft)	83.8	168.0	111.4	80.0	135.0	100.2	81.9	160.0	101.9									
Meander Width Ratio	3.4	8.2	5.1	3.9	9.9	6.7	3.7	8.8	6.4									
Profile																		
Riffle Length (ft)	9.1	23.6	14.5	11.6	23.0	16.1	10.2	19.6	16.1									
Riffle Slope (ft/ft)	0.003	0.028	0.011	0.004	0.018	0.010	0.005	0.037	0.017									
Pool Length (ft)	11.1	53.3	27.3	12.7	53.1	32.1	13.2	45.5	30.3									
Pool Slope (ft/ft)	0.000	0.003	0.001	0.000	0.004	0.001	0.000	0.003	0.001									
Additional Reach Parameters																		
Valley Length (ft)		1370			1370			1370										
Channel Length (ft)		1801			1801			1801										
Sinuosity								1.31										
Water Surface Slope (ft/ft)		0.006			0.006			0.006										
BF Slope (ft/ft)		0.006			0.006			0.006										
Rosgen Classification		C5			C5			C5										
		Exhibi	t Table Reach	Ellingt	on Bran	ch Strea	n Restor	ration (P	roject No	oring Su o. 16-D06 file Reac	045)		inued					
------------------------------------	----------------	---------	------------------	---------	---------	----------	----------	-----------	-----------	------------------------------------	----------	--------------	-------	---------	-----	-----	----------	-----
Parameter	М	Y 1 (20	08)	M	Y 2 (20	09)	Μ	Y 3 (20	10)	MY	7 4 (201	l 1)	M	Y 5 (20	12)	MY	X + (20)	12)
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)	36.7	60.0	47.7	36.0	60.0	48.6	36	60	48.3									
Radius of Curvature (ft)	13.3	28.3	18.2	12.6	26.5	16.8	13.1	27.2	17.1									
Meander Wavelength (ft)	44.0	95.0	56.0	42.2	90.0	59.6	44.0	90.2	57.8									
Meander Width Ratio	4.8	7.8	6.2	4.5	7.5	6.1	5.9	9.8	7.9									
Profile																		
Riffle Length (ft)	4.4	13.6	10.7	7.4	14.5	10.3	6.8	20.6	12.3									
Riffle Slope (ft/ft)	0.005	0.036	0.019	0.005	0.012	0.008	0.005	0.034	0.021									
Pool Length (ft)	7.5	24.9	15.4	13.0	29.5	18.8	12.7	35.1	20.1									
Pool Slope (ft/ft)	0.000	0.004	0.001	0.000	0.006	0.002	0.000	0.006	0.002									
Additional Reach Parameters																		
Valley Length (ft)		1074			1074			1074										
Channel Length (ft)								1328										
Sinuosity	Sinuosity 1.24							1.24										
Water Surface Slope (ft/ft)		0.008			0.008			0.008										
BF Slope (ft/ft)		0.008			0.008			0.008										
Rosgen Classification		C5			C5			C5										

SECTION VII. Methodology Section

This document employs methodologies according to the post-construction monitoring plan and standard regulatory guidance and procedures documents, including Stream Mitigation Guidelines (USACE, 2003), Corps of Engineers Wetland Delineation Manual (USACE, 1987) and Applied River Morphology (Rosgen, D.L., 1996). No other specifications were utilized in this monitoring assessment. References are provided below.

- Environmental Laboratory, 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1. Department of the Army, Waterways Experiment Station, PO Box 631, Vicksburg, Mississippi 39180.
- Hicks, Jesse L., 1980. Soil Survey of Vance County, North Carolina. United States Department of Agriculture, Soil Conservation Service, in cooperation with the North Carolina Agricultural Research Service and the Vance County Board of Commissioners.
- Lee, M.T., R.K. Peet, S.D. Roberts and T.R. Wentworth, 2006. CVS-EEP Protocol for Recording Vegetation. Version 4.0. Available: <u>http://cvs.bio.unc.edu/methods.htm</u>.
- Natural Resources Conservation Service (NRCS), 2006. Office Map Review, Warrenton, NC.
- Natural Resources Conservation Service (NRCS), 2000. Official Soil Series Description Query Facility. Available: <u>http://www.ortho.ftw.nrcs.usda.gov</u>.
- Natural Resources Conservation Service (NRCS), 1998. Keys to Taxonomy, Eighth Edition. USDA. Available: <u>http://statlab.iastate.edu/soils/keytax/KeystoSoilTaxonomy1998.pdf</u>.
- North Carolina Division of Land Resources (NCDLR), 1985. Geologic Map of North Carolina. Department of Natural Resources and Community Development.
- North Carolina Division of Water Quality (NCDWQ), 2006. Surface Water Classifications. Available at: <u>http://h2o.enr.state.nc.us</u>
- North Carolina Division of Water Quality (NCDWQ), 2005. Identification Methods for the Origins of Intermittent and Perennial Streams, Version 3.1. North Carolina Department of Environment and Natural Resources, Division of Environmental Management; Raleigh, NC.
- North Carolina Geologic Survey (NCGS), 1991. Generalized Geologic Map of North Carolina. Division of Land Resources. Raleigh, NC.
- Rosgen, David L., 1996. Applied River Morphology. Wildland Hydrology Books, Inc. Pagosa Springs, CO. 385 pp.
- US Army Corps of Engineers (USACE), US Environmental Protection Agency (USEPA), NC Wildlife Resources Commission (NCWRC) and NC Division of Water Quality (NCDWQ), 2003. Draft Stream Mitigation Guidelines, April 2003.

APPENDIX A-1: VEGETATION RAW DATA

COMMON NAME	SCIENTIFIC NAME	VP #1	VP #2	VP #3	VP #4	VP #5	PLANT VP #6	ED STE	M COUN VP #8		VP #10	VP #11	VP #12	VP #13	Initial (2007) Totals	Year 1 (2008) Totals	Year 2 (2009) Totals	Year 3 (2010) Totals	Year 4 (2011) Totals	Year 5 (2012) Totals	Surviv. %
Tag alder	Alnus serrulata	VI //I	11 112	1	11 /14	11 115	VI # 0	VI 117	VI # O	VI #2	VI #10	VI # II	VI //12	VI #15	1	1	1	1	Totals	Totals	100
Paw Paw	Asimina triloba			-											14	0	0	0			0
River birch	Betula nigra	6	7	3	1					23	7	21	13		86	84	82	81			94
Sugarberry	Celtis laeviagata														11	0	0	0			0
Red bud	Cercis canadensis	1							1						11	7	7	2			18
Flowering dogwood	Cornus florida														1	0	0	0		-	0
Persimmon	Diospyros virginiana						2	3							24	15	9	5		-	21
Green ash	Fraxinus pennsylvanica		2	3				15	23				9		59	56	53	52			88
Blackgum	Nyssa sylvatica														13	1	1	0			0
Sourwood	Oxydendrum arboretum			6				3		2					15	13	13	11			73
Sycamore	Platanus occidentalis	3	2	4	1			6	3		8				36	32	30	27			75
White oak	Quercus alba					5	1							1	11	7	7	7			64
Swamp chestnut oak	Quercus michauxii		5	1	8	6	15					2		2	51	46	41	39			76
Willow oak	Quercus phellos		2			5		1	1			1	1	11	26	25	22	22			85
Black willow	Salix nigra			1											1	1	1	1			100
														Totals	360	288	267	248	0	0	
Total	Number of Individuals Planted	26	26	30	26	26	26	30	30	30	26	28	30	26							
	Plot Size (square meters)	100	100	100	100	100	100	100	100	100	100	100	100	100							
Total Number of	f Individuals Observed (2008)	14	22	30	16	18	22	29	29	29	15	24	25	15							
Total Number of	f Individuals Observed (2009)	13	19	28	13	17	21	29	29	26	15	24	24	14							
Total Number of	f Individuals Observed (2010)	10	18	19	10	16	18	28	28	25	15	24	23	14							
Total Number of	f Individuals Observed (2011)																				
Total Number of	f Individuals Observed (2012)																				
	Plot Size (square meters)	100	100	100	100	100	100	100	100	100	100	100	100	100							
	Stems/Acre (Initial)	1053	1053	1215	1053	1053	1053	1215	1215	1215	1053	1134	1215	1053							
	Stems/Acre (2008)	567	891	1215	648	729	891	1174	1174	1174	607	972	1012	607							
	Stems/Acre (2009)	526	769	1134	526	688	850	1174	1174	1053	607	972	972	567							
	Stems/Acre (2010)	405	729	769	405	648	729	1134	1134	1012	607	972	931	567							
	Stems/Acre (2011)																				
	Stems/Acre (2012)																				

APPENDIX A-2: VEGETATION MONITORING PLOT PHOTOGRAPH SUMMARY

APPENDIX A-2: VEGETATION MONITORING PLOT PHOTOGRAPH SUMMARY CONTINUED

APPENDIX A-2: VEGETATION MONITORING PLOT PHOTOGRAPH SUMMARY CONTINUED

Feature	Metric (per As-built and reference	(# Stable)	Total	Total	%	Feature
Category	baselines)	Number	Number	Number/	Perform.	Perform.
		Performing	per	feet in	in Stable	Mean or
		as	As-built	unstable	Condition²	Total ³
		Intended		state ¹		
A. Riffles	1. Present? ⁴	83	81	N/A	100	
	2. Armor stable (e.g. no displacement)?	83	81	N/A	100	
	3. Facet grade appears stable	83	81	N/A	100	
	4. Minimal evidence of embedding/fining?	83	81	N/A	100	
	5. Length appropriate?	83	81	N/A	100	100%
B. Pools	1. Present? (e.g. not subject to severe aggradation or migration?) ⁴	90	77	N/A	100	
	2. Sufficiently deep (Dmax:Dmean >1.6?)	82	77	N/A	100	
	3. Length Appropriate?	87	77	N/A	100	100%
C. Thalweg	1. Upstream of meander bend (run/inflection) centering? ⁵	N/A	N/A	N/A	100	
	2. Downstream of meander (glide/inflection) centering? ⁵	N/A	N/A	N/A	100	100%
D. Meanders	1. Outer bend in state of limited/controlled erosion?	97	97	N/A	100	
	2. Of those eroding, # w/concomitant point bar formation?	97	97	N/A	100	
	3. Apparent Rc within spec?	97	97	N/A	100	
	4. Sufficient floodplain access and relief? ⁶	97	97	N/A	100	100%
E. Bed General	1. General channel bed aggradation areas (bar formation)	N/A	N/A	N/A	100	
	2. Channel bed degradation – areas of increasing down-cutting or head-cutting?	N/A	N/A	N/A	100	100%
F. Vanes	1. Free of back or arm scour?	5	5	N/A	100	
	2. Height appropriate?	5	5	N/A	100	
	3. Angle and geometry appear appropriate?	5	5	N/A	100	
	4. Free of piping or other structural failures	5	5	N/A	100	100%
G. Rootwads/	1. Free of scour?	24	24	N/A	100	
Boulders	2. Footing stable?	24	24	N/A	100	100%

APPENDIX C-1: STREAM VISUAL ASSESSMENT TABLE

Footnotes:

- 1. Metrics that are spatial estimates should be entered as:
 - The number of locales over the reach for which the failing condition is observed / followed by the total linear distance (feet) or area for which the failing or unstable condition is observed.
- 2. In the case of categorical metrics for which a feature count is involved, this is simply calculated as the number of functional features that are in a state of stability as a percentage of the total. In the case of those metrics based on footage or aerial extent, it is the amount in a state of failure or instability expressed as a proportion of the total amount of that feature. The resulting proportion is then subtracted from 1 and then multiplied by 100 to give a percentage that represents the proportion of that feature category in a state of apparent stability.
- 3. The mean of the metrics for a given feature category.
- 4. Was the feature actually present as compared to the As-built or has the feature been completely obscured (aggraded) or removed (degraded).
- 5. Is the thalweg centering up on the channel in between the meander bends?
- 6. Is the meander bend in a state of constriction?

APPENDIX C-2: MONITORING PHOTOGRAPH SUMMARY

(downstream) at along Ellington

APPENDIX C-2: MONITORING PHOTOGRAPH SUMMARY CONTINUED - ADDITIONAL PHOTOS

Photo Number and Location

2010 Monitoring Assessment - Taken June 2010

Photo #47. Facing east (downstream) along the northern edge of the Unnamed Tributary at fescue from the adjacent pasture.

Photo #48. Facing west (upstream) along the Unnamed Tributary at fescue from the adjacent pasture.

APPENDIX C-2: MONITORING PHOTOGRAPH SUMMARY CONTINUED - ADDITIONAL PHOTOS

Photo Number and Location

2010 Monitoring Assessment - Taken June 2010

Photo #50. Facing east across Cross Section 11 at cattails within the streambed and privet adjacent (north) of the instrument.

Photo #51. Facing west (upstream) along the Unnamed Tributary at cattails adjacent to Vegetation Plot #12 along the Unnamed Tributary.

Photo #52. Facing north (downstream) at cattails in the vicinity of Cross Section #14 along Ellington Branch.

APPENDIX C-2: MONITORING PHOTOGRAPH SUMMARY CONTINUED - ADDITIONAL PHOTOS

Photo Number and Location

2010 Monitoring Assessment - Taken June 2010

Photo #53. Facing south across Cross Section #16 along the Unnamed Tributary at the springhead and enlarged scour area.

Photo #54. Facing southwest at Cross Section #16 and the subsequent springhead and enlarged scour area.

APPENDIX C-3: CROSS SECTION PLOTS AND RAW DATA TABLES – ELLINGTON BRANCH

XSC #1 - Ellington Branch Sta. 10+67.7

Photo #1.

Facing north (downstream) at Cross Section #1 (2010)

(SC #1																	
	As-built			Year 1			Year 2			Year 3			Year 4			Year 5	
Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF									
0	351.32		0	351.38		0	351.36		0	351.37							
2	351.37		2	351.4		4	351.77		3	351.53							
4	351.83		4	351.8		7	351.25		6	351.23							
6	351.53		7	351.23		11	350.03	349.15	10	350.25							
8	351.03		10	350.3		15	349.15	349.15	13	349.31							
10	350.36		14.6	348.96	348.96	15.7	346.72	349.15	15	348.88	348.88						
12	349.74		15.7	345.66	348.96	17	346.92	349.15	16	344.72	348.88						
14	349.24	349.24	16.9	345.71	348.96	19	347.27	349.15	17	344.94	348.88						
16.3	347.64	349.24	18.4	346.06	348.96	20.3	347.71	349.15	18	345.29	348.88						-
18	345.61	349.24	19.7	346.69	348.96	22	348.59	349.15	19	345.63	348.88						
20	346.19	349.24	21	347.1	348.96	24	348.86	349.15	20	346	348.88						
21.4	347.22	349.24	21.4	347.32	348.96	27	348.89		20.3	347.49	348.88						
23.2	347.65	349.24	24	348.23	348.96	29	349.59		21	348.22	348.88						
25	348.09	349.24	26.3	348.62	348.96	33	350.51		23	349.13							
27	348.85	349.24	30	349.65		40.7	351		25	349.53							
32	350.27	349.24	35	350.74					29	349.35							
34	350.69		40.7	351.01					34	350.74							
37	351								40.9	350.79							
40.9	351																

XSC #2 - Ellington Branch Sta. 13+85 (riffle)

Photo #3.

Facing north (downstream) at Cross Section #2 (2010)

KSC #2 - R	iffle																
	As-built			Year 1			Year 2			Year 3			Year 4			Year 5	-
Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF
0	348.3		0	348.29		0	348.25		0	348.28							
2	347.86		4	347.24		4	347.27		7	346.16							
7	346.23		7	346.22		8	345.99		11	345.73							
11	345.72		11	345.72		14	345.76		15	345.64							
15	345.63		14	345.72		17	345.72	345.72	18.7	345.39	345.39						
18	345.6	345.63	18	345.61	345.61	19	345.36	345.72	21	344.79	345.39						
20	344.69	345.63	19.5	344.9	345.61	19.7	344.9	345.72	22	344.66	345.39						
21	344.71	345.63	21	344.74	345.61	21.7	344.58	345.72	22.2	344.33	345.39						
22	344.6	345.63	22.7	344.56	345.61	22.5	344.18	345.72	23.3	344.31	345.39						
23	344.52	345.63	24.5	344.6	345.61	23.7	344.13	345.72	24.2	343.7	345.39						
24	344.56	345.63	25.4	344.86	345.61	25		345.72	24.9	344.68	345.39						
25	344.72	345.63	27	345.6	345.61	26	345.39	345.72	26.8	345.66							
27.2	345.66	345.63	30	345.66		29	345.67	345.72	35	346.1							
31	345.72		34	345.97		33	345.85	345.72	40	347.47							
35	346.07		37	346.54		36	346.25										
39	347.11		39	347.09		41	348.05										
43	348.78		42	348.44		44.2	348.84										
44.2	348.91		44.3	348.88													

XSC #3 - Ellington Branch Sta. 16+25.2 (pool)

Photo #5.

Facing north (downstream) at Cross Section #3 (2010)

	As-built			Year 1			Year 2			Year 3			Year 4			Year 5	
Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF
0	348.77		0	348.73		0	348.77		0	348.62							
2	348.28		3	347.77		5	346.89		7	346.3							
7	346.39		6	346.5		6.5	346.4		14	345.75							
15	345.66		13	345.96		17	345.55		20	345.42							
26	344.96	343.9	19	345.47		26	345.02	345.02	25	345.07							
29.2	343.02	343.9	25.5	345.05		28	343.87	345.02	27	344.48							
31	342.07	343.9	27.5	343.98	343.98	29.2	343.24	345.02	29.3	343.55	343.55						
33.3	341.07	343.9	28.5	343.31	343.98	31	342.3	345.02	32	341.51	343.55						
36.3	341.02	343.9	30.8	342.34	343.98	32.5	341.44	345.02	34	340.59	343.55						
39.5	343.02	343.9	34	340.78	343.98	35.6	340.86	345.02	37	341.21	343.55						
42	343.9	343.9	36.3	341.25	343.98	37	341.68	345.02	39	342.72	343.55						
47	344.39		38	342.08	343.98	39.3	343.2	345.02	40	343.58							
55	345.43		40	343.36	343.98	42	343.94	345.02	44	344.34							
61	345.67		44	344.2		49	344.75	345.02	49	344.61							
66	346.72		50	344.78		57	345.4	345.02	57	345.23							
			56	345.41		62	345.82		63	345.94							
			61	345.57													
			66.2	346.67													

XSC #4 - Ellington Branch Sta. 18+74.7 (riffle)

Photo #7.

Facing north (downstream) at Cross Section #4 (2010)

	As-built			Year 1			Year 2			Year 3			Year 4			Year 5	
Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF									
0	345.7		0	345.62		0	345.7		4	344.72							
6	344.43		3	344.93		7	344.38		12	343.71							
12	343.81		8	344.14		17	343.55		20	343.19							
20	343.25		13	343.69		31	343.22	343.22	31	343.24	343.24						
27	343.21		20	343.4		33	342.76	343.22	34	342.41	343.24						
32	343.04	343.04	27	343.2		35	342.23	343.22	35.7	342.42	343.24						
34	342.26	343.04	32	342.98	342.98	37	342.02	343.22	36.4	341.85	343.24						
36.4	341.92	343.04	33	342.59	342.98	38	341.75	343.22	37.4	341.69	343.24						
37.3	341.79	343.04	33.9	342.31	342.98	39.3	342.05	343.22	38.4	341.8	343.24						
38	341.71	343.04	35.5	342.05	342.98	41	342.39	343.22	39.4	342.4	343.24						
39	341.77	343.04	37	341.9	342.98	43	343.37	343.22	41	342.51	343.24						
39.7	341.94	343.04	38.3	341.78	342.98	46	343.46		43	343.34							
41	342.44	343.04	40	342	342.98	48	343.28		48	343.17							
42.6	343.29	343.04	40.7	342.31	342.98	50	343.27		53	343.21							
47	343.38		41.4	342.88	342.98	52	343.25		55	343.39							
52	343.15		42.5	343.21		55	343.58		60.6	346.09							
55	343.43		47	343.32		60.7	346.17										
59	345.77		52	343.1													
60.6	346.17		55	344.03													
			58	345.41													
			60.6	346.12													

XSC #5 - Ellington Branch Sta. 21+47.3 (pool)

Photo #9.

Facing north (downstream) at Cross Section #5 (2010)

NGC #3 - FU	501		
	As-built		
Station	Elevation	BKF	Station
0	343.6		0
5	342.67		3
13	341.4		7
19	340.93	340.93	11
25	340.82	340.93	15

	As-built			Year 1			Year 2			Year 3			Year 4			Year 5	
Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF									
0	343.6		0	343.56		0	343.61		3	342.94							
5	342.67		3	343.04		6	342.55		8	342.13							
13	341.4		7	342.33		15	341.18		13	341.25							
19	340.93	340.93	11	341.73		23	340.89	340.89	20	340.91	340.91						
25	340.82	340.93	15	341.16	341.16	27	340.44	340.89	26	340.51	340.91						
28	340.3	340.93	20	340.92	341.16	29	340	340.89	28	340.43	340.91						
28.6	339.93	340.93	25	340.74	341.16	31	338.93	340.89	29	339.59	340.91						
30	339.27	340.93	27.7	340.35	341.16	32.6	338.75	340.89	31	338.09	340.91						
32	338.51	340.93	29	339.71	341.16	34	338.96	340.89	32.5	338.01	340.91						
34	338.74	340.93	31	339.33	341.16	35	339.42	340.89	34	338.44	340.91						
35.1	339.3	340.93	32.7	339.2	341.16	35.1	340.03	340.89	35.4	339.41	340.91						
35.1	339.9	340.93	34	339.27	341.16	35.5	340.41	340.89	37.5	341.27							
35.2	340.35	340.93	34.8	338.86	341.16	37.4	341.34		43	341.2							
37.4	341.33	340.93	35.6	340.27	341.16	42	341.4		47	341.13							
42	341.34		36.3	340.73	341.16	47.5	341.26		50	342.31							
47	341.19		37.6	341.32		50	342.48		53.5	344.28							
50	342.44		41	341.35													
53.4	344.33		46	341.39													
			48.6	341.57													
			51	342.8													
			53.5	344.3													

XSC #6 - Ellington Branch Sta. 25+04.9 (riffle)

Photo #11.

Facing north (downstream) at Cross Section #6 (2010)

	As-built			Year 1			Year 2			Year 3			Year 4			Year 5	
Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF									
0	342.77		0	342.75		0	342.85		0	342.64							
4	341.89		3	342.15		8	340.32		4	341.83							
7	340.42		7	340.4		11	340.2		8	340.14							
11	340.18		9	340.26		17	340.01	339.66	13	340.08							
18	339.85	339.68	14	339.95		19	339.6	339.66	18	339.79							
21	338.54	339.68	18	339.75		20.5	338.86	339.66	20	338.97	339.56						
23	338.47	339.68	19	339.36	339.61	21.2	338.66	339.66	21.3	338.86	339.56						
25	338.2	339.68	21.2	338.56	339.61	22.7	338.63	339.66	23	338.35	339.56						
26	338.08	339.68	22.6	338.48	339.61	24	338.54	339.66	25	338.09	339.56						
28.2	338.55	339.68	24	338.42	339.61	25.4	338.35	339.66	27	338.11	339.56						
30	339.68	339.68	25.4	338.22	339.61	27.1	338.37	339.66	28.5	338.85	339.56						
34	339.51		26.7	338.22	339.61	27.8	338.63	339.66	30.4	339.56	339.56						
39	339.48		28.3	338.53	339.61	28.7	338.85	339.66	36	339.39							
43	341.37		29	339.17	339.61	30.3	339.66	339.66	39.2	339.46							
45.9	342.18		30	339.61	339.61	34	339.47		43	341.24							
			34	339.44		37	339.44										
			39	339.46		39.5	339.62										
			42	340.86		43	341.37										
			45.9	342.12													

XSC #7 - Ellington Branch Sta. 28+23.2 (riffle)

Photo 13.

Facing north (downstream) at Cross Section #7 (2010)

XSC #7	- Riffle	
--------	----------	--

SC #7 - R																	
	As-built			Year 1			Year 2			Year 3			Year 4			Year 5	
Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF
0	339.87		0	339.89		0	339.94		4	339.78							
5	339.72		5	339.75		6	339.72		12	338.64							
10	338.93		9	339.19		11	338.87		20	337.75							
15	338.37		14	338.39		18	338.14		26.5	337.88							
20	337.75		21	338.09		27	337.91	337.64	29.5	336.9	337.7						
25	337.88		27	337.78		29	337.23	337.64	30.5	336.35	337.7						
27	337.8	337.5	29	337.2	337.6	31	336.61	337.64	32.5	336.42	337.7						
30.4	336.51	337.5	30.7	336.58	337.6	33	336.45	337.64	32.8	336.27	337.7						
31.8	336.35	337.5	32.5	336.32	337.6	33.9	336.15	337.64	33.8	335.81	337.7						
32.7	336.24	337.5	33.3	336.25	337.6	35	336.42	337.64	35	336.43	337.7						
34	336.18	337.5	34.1	336.12	337.6	36	336.53	337.64	37	336.77	337.7						
34.8	336.31	337.5	36.2	336.28	337.6	38	336.87	337.64	39	336.82	337.7						
35.8	336.22	337.5	38.5	336.6	337.6	40	337.2	337.64	41.5	337.7	337.7						
36.8	336.36	337.5	41	337.6	337.6	41	337.64	337.64	57	338.65							
38	336.44	337.5	44	337.95		47	338.21		63.5	340.79							
39	336.71	337.5	51	338.33		57	338.74										
42	337.79	337.5	56.4	338.65		60	339.99										
48	338.26		60	339.88													
56	338.62		63.7	340.79													
60	340.04																
63.7	340.87																

XSC #8 - Ellington Branch Sta. 29+74.7 (pool)

Photo #15.

Facing north (downstream) at Cross Section #8 (2010)

	As-built			Year 1			Year 2			Year 3			Year 4			Year 5	
Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF
0	338.59		0	338.59		0	338.68		4	338.44							
4	338.48		4	338.43		8	337.93		8	337.95							
8	337.92		8	337.9		11	337.25		13	336.86							
12	337		10	337.29		16	336.88		20	336.53	336.53						
18	336.72		15	336.98		19	336.7	336.7	21.5	334.98	336.53						
20	336.25	336.25	19	336.63		20	336.28	336.7	22	334.08	336.53						
21	335.31	336.25	20.2	336.09	336.42	21	334.99	336.7	23	333.54	336.53						
21	335.04	336.25	21.3	335.5	336.42	22	334.08	336.7	24	333.49	336.53						
22.5	334.3	336.25	21.7	334.91	336.42	25	333.56	336.7	26	333.73	336.53						
24	333.68	336.25	22.6	334.07	336.42	27	333.94	336.7	28	334.14	336.53						
25	333.58	336.25	23.6	333.56	336.42	28	335.12	336.7	29.2	334.84	336.53						
27	334.05	336.25	25.3	333.91	336.42	29.9	335.45	336.7	29.6	335.23	336.53						
29.3	335.29	336.25	26.9	334	336.42	35	335.91	336.7	33	335.68	336.53						
33	335.7	336.25	28.3	335.05	336.42	41	336.62	336.7	38	336.25	336.53						
38	336.33	336.25	34.4	335.53	336.42	50	337.38		46	336.94	336.53						
42	336.69		35	335.9	336.42	60	337.75		55	337.65							
48	337.18		40	336.42	336.42	65	337.82		68.7	338.16							
58	337.66		47	337.08													
58.7	338.12		55	337.51													
			63	337.81													
			68.8	338.15													

XSC #9 - Ellington Branch Sta. 31+88.3 (pool)

Photo #17.

Facing north (downstream) at Cross Section #9 (2010)

(SC #9 - P	ool																
	As-built			Year 1			Year 2			Year 3			Year 4			Year 5	
Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF
0	336.15		0	336.14		0	336.14		4	335.75							
5	335.86		7	335.85		14	335.69		15	335.59							
12	335.75		14	335.8		21	335.52		25	335.36							
20	335.46		22	335.49		33	335.16	335.16	34	335.01	335.01						
33	335.15	335.15	27	335.28		34.7	334.61	335.16	35.4	333.89	335.01						
34.6	334.66	335.15	33.5	335.04	335.04	35.2	333.95	335.16	36	333.51	335.01						
35.1	334.03	335.15	34.5	334.62	335.04	37	332.82	335.16	38	333	335.01						
35.5	333.39	335.15	34.9	334.08	335.04	39	332.4	335.16	41	332.09	335.01						
37.2	332.75	335.15	36	333.11	335.04	41	332.3	335.16	43	333.02	335.01						
39	332.4	335.15	37.5	332.69	335.04	43	333.07	335.16	44.1	333.9	335.01						
40.5	332.14	335.15	39	332.45	335.04	44.6	333.94	335.16	47	335.05							
42.3	332.44	335.15	41	332.24	335.04	47	334.93	335.16	53	335.55							
44	333.66	335.15	43.5	333.43	335.04	55	335.45		61	335.66							
44.8	333.86	335.15	44.5	333.78	335.04	61	335.63		66	337.29							
44.9	334.02	335.15	44.9	334.06	335.04	63	336.11		69.8	338.08							
46	334.74	335.15	46.4	334.74	335.04	69.8	338.08										
47.5	335.21	335.15	49.2	335.11													
55	335.42		52	335.22													
60	335.61		56	335.36													
66	337.3		61	335.6													
69.8	338.06		65	336.99													
			69.8	338.1													

XSC #10 - Ellington Branch Sta. 34+10.4 (riffle)

Photo #19.

Facing north (downstream) at Cross Section #10 (2010)

	As-built			Year 1			Year 2			Year 3			Year 4			Year 5	
Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF
0	335.1		0	335.13		0	335.17		0	335.15							
6	335.25		5	335.1		9	335.14		7	335.08							
12	334.99		10	335.05		14	334.84		14	334.75							
16	334.67		17	334.5		17.4	334.55		17	334.55							
18	334.29	333.7	18.7	333.97		19	333.8	333.8	20	333.46	333.85						
20	333.3	333.7	20.6	333.11	333.77	21	332.82	333.8	22	332.83	333.85						
21	332.74	333.7	21.6	332.79	333.77	22.6	332.7	333.8	23	332.19	333.85						
22	332.58	333.7	22.2	332.62	333.77	23.1	332.38	333.8	23.4	332.08	333.85						
22.5	332.58	333.7	23	332.48	333.77	23.3	332.09	333.8	23.8	332.36	333.85						
23	332.54	333.7	23.5	332.08	333.77	23.7	331.99	333.8	24.9	332.39	333.85						
23.4	332.44	333.7	24.2	332.6	333.77	24.3	332.39	333.8	25.6	332.71	333.85						
24.2	332.13	333.7	25.5	332.75	333.77	25.2	332.72	333.8	27.6	332.89	333.85						
24.5	332.54	333.7	28	332.79	333.77	27	332.76	333.8	29.8	333.07	333.85						
27	332.67	333.7	31	333.08	333.77	28.6	332.98	333.8	31	333.31	333.85						
30	332.95	333.7	34	333.77	333.77	29.7	333	333.8	36	333.85	333.85						
33	333.7	333.7	38	334.01		30.9	333.11	333.8	44	334.61							
39	334.19		43	334.46		32	333.48	333.8	53	335.57							
47	334.88		50	335.15		34	333.72	333.8									
56.2	335.87					37	333.93										
						42	334.37										
						52	335.51										

XSC #11 - Ellington Branch Sta. 36+55.6 (pool)

Photo #21.

Facing north (downstream) at Cross Section #11 (2010)

XSC	#11	-	Poc)	
					le

SC #11 -				V 4			¥ 0			V 0			N 4		1	Maran F	
	As-built			Year 1			Year 2			Year 3			Year 4			Year 5	
Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF
0	336.58		0	336.53		0	336.57		0	336.58							
3	335.59		3	335.62		4	335.41		7	334.54							
8	334.25		7	334.55		9	334		13	333.01							
12	333.26		12	333.21		13	333.02		19	332.84							
16	332.95		16	332.88		18	332.81		23	332.84							
20	332.76		19	332.7		23	332.83		25	329.73							
23	332.71	332.08	23	332.7		24	332.8	332.08	27.4	330.25	332.31						
25.3	331.17	332.08	25.7	331.3	332.42	25	331.15	332.08	28	330.49	332.31						
25.3	329.69	332.08	25.7	329.88	332.42	25	329.64	332.08	30	330.72	332.31						
26.3	329.21	332.08	26.4	329.26	332.42	27.5	329.3	332.08	30.6	331.26	332.31						
27.4	329.37	332.08	27.7	329.9	332.42	28.2	329.63	332.08	31	331.59	332.31						
29	329.82	332.08	29.3	330.21	332.42	29.6	330.64	332.08	34.6	331.76	332.31						
30.3	330.66	332.08	31	331.09	332.42	30.4	331.14	332.08	39	332.25	332.31						
32.2	331.05	332.08	32.7	331.16	332.42	33	331.09	332.08	48	332.31	332.31						
34.8	331.2	332.08	34.4	331.13	332.42	37	331.42	332.08	57	332.97							
40	331.54	332.08	36	331.2	332.42	41.9	331.8	332.08	63	334.48							
47	332.08	332.08	37	331.28	332.42	46	332.08	332.08									
57	332.91		40	331.56	332.42	57	332.94					1					
65.9	335.08		45	332	332.42	62	334.11					1					
			49	332.42	332.42							1					-
			54	332.77								1					-
			60	333.66								1					-
	1		66	335.06								1	1		1		

XSC #12 - Ellington Branch Sta. 38+49.7 (riffle)

Photo #23.

Facing east (downstream) at Cross Section #12 (2010)

	As-built			Year 1			Year 2			Year 3			Year 4			Year 5
Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation									
0	334.03		0	334.05		0	334.05		0	334.02						
7	333.51		24	332.2		5	333.72		6	333.65						
14	332.55		27.5	332.13		12	333		13	332.78						
20	332.13		29	331.58	331.96	19	332.26		26	332.26						
27	332.09	331.96	30.6	330.59	331.96	27.5	332.12	332.12	28	331.97	331.97					
29	331.5	331.96	31.9	330.35	331.96	29	331.55	332.12	30	331.05	331.97					
30.5	330.53	331.96	33	330.12	331.96	31	330.56	332.12	32.3	330.51	331.97					
31.3	330.37	331.96	33.8	330	331.96	31.6	330.44	332.12	33	330.03	331.97					
32	330.2	331.96	35	330.26	331.96	32.5	330.27	332.12	34	329.83	331.97					
33	330.09	331.96	36.1	330.2	331.96	33.5	330.04	332.12	35	330.01	331.97					
33.6	330.06	331.96	36.3	330.59	331.96	34.5	330.17	332.12	36.3	330.53	331.97					
35	330.23	331.96	38.7	331.47	331.96	35.5	330.35	332.12	38.6	331.29	331.97					
36.3	330.35	331.96	40	331.96	331.96	36.1	330.46	332.12	39.9	331.95	331.97					
37.2	330.57	331.96	45	332.16		37.7	330.98	332.12	47	332.16						
38	331.17	331.96	49	332.25		39.5	331.85	332.12	53	333.23						
40	331.96	331.96	53	333.25		45	332.23	332.12								
44	332.13		56.3	333.41		49.3	332.3									
49	332.26					53	333.31									
54	333.35															
56.2	333.37															

XSC #13 - Ellington Branch Sta. 40+99.5 (pool)

Photo #25.

Facing north (downstream) at Cross Section #13 (2010)

	As-built			Year 1			Year 2			Year 3			Year 4	_		Year 5	
Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF									
0	333.9								0	333.96							
4	332.94		5	332.57		4	332.88		10	331.37							
7	331.77		8	331.57		9	331.53		15	330.86							
12	331.15		14	330.89		14	330.89		20.2	330.61	330.61						
19	330.58	330.58	18	330.65	330.65	18	330.69		22.2	327.01	330.61						
21	329.95	330.58	19.6	330.38	330.65	20	330.63	330.49	24.5	326.99	330.61						
21.5	329.52	330.58	21	329.59	330.65	21	330.04	330.49	27	327.61	330.61						
22	328.81	330.58	22.7	328.56	330.65	22	328.68	330.49	29	328.7	330.61						
24	328.37	330.58	24	328.39	330.65	22	328.09	330.49	29.6	329.54	330.61						
25.6	327.9	330.58	25	328.04	330.65	23.3	327.24	330.49	32	329.91	330.61						
28	328.44	330.58	26.7	327.83	330.65	25.5	327.5	330.49	38	330.37	330.61						
30	329.46	330.58	29	329.03	330.65	27.5	328.63	330.49	50	330.91							
30.5	329.56	330.58	31.2	329.62	330.65	28.3	329.19	330.49	64	331.29							
34	330.08	330.58	37	330.31	330.65	30	329.56	330.49	73	331.73							
39	330.38	330.58	46	330.98		33.5	330.01	330.49									
48	331.06	330.58	58	331.03		40	330.49	330.49									
60	331.21		69	331.25		50	330.9										
70	331.3		76.1	332.11		60	331.17										
76.1	332.11					69	331.28										
						76.1	332.14										-

XSC #14 - Ellington Branch Sta. 44+22.4 (riffle)

Photo #27.

Facing north (downstream) at Cross Section #14 (2010)

	As-built			Year 1			Year 2			Year 3			Year 4			Year 5	
Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF
0	331.07		0	331.04					4	330.2							
4	330.21		4	330.17		4	330.23		11	328.85							
10	329.09		9	329.16		13	328.65	328.55	20	328.1	328.1						
16	328.41	328.41	14	328.41		20	328.01	328.55	22	327.53	328.1						
21	327.76	328.41	19	328.1	328.1	23	327.34	328.55	28.2	327.21	328.1						
25	326.99	328.41	21.5	327.53	328.1	26	327.18	328.55	29.4	326.54	328.1						
26	326.89	328.41	23.2	327.2	328.1	28	327.42	328.55	30.8	326.24	328.1						
27	327	328.41	25.1	326.99	328.1	28.5	326.97	328.55	31.8	327.3	328.1						
28	327.02	328.41	26.6	327.05	328.1	29	326.62	328.55	33.7	328.42							
29	326.85	328.41	28.4	326.84	328.1	29.7	326.14	328.55	37	328.78							
30	326.8	328.41	29.3	326.27	328.1	30.5	326.37	328.55	42	329.08							
30.8	326.88	328.41	30	325.91	328.1	31.2	327.25	328.55	47	330.77							
30.9	326.98	328.41	31.2	327.13	328.1	32.7	328.06	328.55	52	331.17							
32.5	327.87	328.41	33	328.08		35	328.55	328.55									
34.5	328.48	328.41	35	328.42		40	328.88										
41	328.83		39	328.75		43	329.32										
46	330.29		42	328.94		49	331.02										
51.9	331.12		46	330.28		51.9	331.27										
			50	331.05													
			51.8	331.15													

XSC #15 - Ellington Branch Sta. 46+79.1 (pool)

Photo #29.

Facing north (downstream) at Cross Section #15 (2010)

	As-built			Year 1			Year 2			Year 3			Year 4			Year 5	
Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF									
0	330.7		0	330.67		0	330.73		0	330.67							
3	331.23		2	330.8		2	331		4	331.22							
5	330.99		4	331.11		3	331.22		6	330.77							
10	329.1		6	330.7		5	331		14	327.45							
15	327.5		14	327.78		8	329.64		18.5	326.91	326.94						
18.5	326.93	326.79	18.6	326.9		12	328.21		20.3	325.86	326.94						
19.7	326.16	326.79	20	326.05	326.05	16	327.31		21.5	325.07	326.94						
20.2	325.72	326.79	22	324.88	326.05	17.8	327.02		24.5	324.45	326.94						
21	325.34	326.79	24	323.51	326.05	19.4	326.4	326.76	27	324.29	326.94						
22	324.8	326.79	26.5	322.89	326.05	20.5	325.57	326.76	29	325.09	326.94						
24	323.78	326.79	27.8	323.83	326.05	22	324.77	326.76	30	325.89	326.94						
26	323.46	326.79	30	325.44	326.05	24	323.73	326.76	30.6	326.25	326.94						
28	324.32	326.79	32.7	326.05	326.05	26	323.35	326.76	33.2	326.26	326.94						
30	325.54	326.79	38	326.58		28	324.09	326.76	42	326.94	326.94						
30.4	325.73	326.79	46	326.76		30	325.49	326.76	57	327.13							
33	326.12	326.79	56	327.04		34	326.22	326.76	72	327.31							
38	326.61	326.79	70	327.17		40	326.76	326.76	82	327.32							
41	326.79	326.79	85.8	327.31		54	326.97										
50	326.91					70	327.22										
70	327.33					85.7	327.34										
85.6	327.34																
APPENDIX C-3 Continued: CROSS SECTION PLOTS AND RAW DATA TABLES – UT ELLINGTON BRANCH

XSC #16 - UT to Ellington B Sta. 10+95.2 (pool)

Photo #31.

Facing east (downstream) at Cross Section #16 (2010). The additional scour noted along the right streambank is discussed in Section VI.B.4.

XSC #16 - Pool

(50 #16 -	As-built			Year 1			Year 2			Year 3			Year 4		I	Year 5	
Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF
0	350.49	Ditt	4	349.93	Bra	4	349.92	Bra	4	349.96	Bra	oration	Lioradon	Bra	Otation	Lioration	Bru
10	349.18		8	349.43		12	349.13		10	349.16							
20	348.85		13	349.16		20	348.89		18	349.05							
29	348.6	348.6	20	348.92		28	348.68	348.68	27	348.7	348.7						
33	348.01	348.6	26	348.79		33	348.08	348.68	32	348.27	348.7						
36	347.46	348.6	30	348.37	348.6	35.6	347.65	348.68	35	347.75	348.7						
37	347.03	348.6	33	348.03	348.6	36	347.46	348.68	36.6	347.28	348.7						
38	346.79	348.6	35.5	347.66	348.6	38.7	347.46	348.68	37.4	347.29	348.7						
39	346.84	348.6	36.8	347.26	348.6	39	347.57	348.68	38.1	347.18	348.7						
40	347.26	348.6	37.9	346.78	348.6	40.7	347.5	348.68	38.6	347.58	348.7						
40.5	347.46	348.6	39	346.85	348.6	41.8	347.61	348.68	39.4	347.27	348.7						
42	348.67	348.6	40.4	347.59	348.6	45.7	348.71	348.68	41.3	346.87	348.7						
51	349.06		41.5	347.81	348.6	49	348.89		43.3	347.3	348.7						
56	351.09		41.9	348.69		54	350.31		44.5	348.01	348.7						
59.5	352.79		45	348.56		59.4	352.54		45.6	348.68							
			50	348.97					52	349.55							
			55	350.71					59.3	352.81							
			59.5	352.64													

XSC #17 - UT to Ellington Branch Sta. 12+35.1 (riffle)

Photo #33.

Facing east (downstream) at Cross Section #17 (2010)

	As-built			Year 1			Year 2			Year 3			Year 4			Year 5	
Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF
0	349.78		3	348.68		4	348.28		4	348.28							
7	347.3		6	347.69		7	347.35		8	347.19							
13.7	346.65	346.65	9	347		11	346.68		13.7	346.67	346.67						
14.3	346.24	346.65	14	346.59		13.7	346.68		14.4	346.44	346.67						
14.3	345.69	346.65	14.3	346.4	346.4	14.3	346.25	346.25	15	346.21	346.67						
15.4	345.64	346.65	15	345.91	346.4	14.3	345.87	346.25	16	346.33	346.67						
16.6	345.83	346.65	16	345.82	346.4	15.2	345.94	346.25	17	346.45	346.67						
17.5	346.03	346.65	17	345.98	346.4	16.3	345.94	346.25	19.6	346.68							
18.8	346.23	346.65	19.1	346.39	346.4	17.4	346.08	346.25	21	346.75							
23	346.96	346.65	21	346.74		18.2	346.25	346.25	28	347.75							
28	347.64		23	346.97		20	346.62		34	348.29							
36	348.62		25	347.27		24	347.24		41.6	350.35							
41.6	350.26		29	347.79		30	347.86										
			35	348.31		35	348.35										
			39	348.95		38.5	348.94										
			41.7	350.37		41.5	350.37										

XSC #18 - UT to Ellington Branch Sta. 13+75.2 (pool)

Photo #35.

Facing east (downstream) at Cross Section #18 (2010)

	As-built			Year 1			Year 2			Year 3			Year 4			Year 5	
Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF									
0	347.79		0	347.87		0	347.87		4	347.52							-
5	347.38		4	347.52		5	347.42		7	346.81							
10	345.71		6	347.14		6	346.4		11	345.67							
15	345.54		9	345.91		10.5	345.7		15	345.63							
18.5	345.49	345.49	11	345.6		14	345.58		18	345.62	345.62						
19.2	345.15	345.49	15	345.5		18.7	345.62	345.62	18.8	345.42	345.62						
19.2	344.77	345.49	18.5	345.76		19	345.41	345.62	18.9	344.63	345.62						
20	344.16	345.49	18.9	345.49	345.49	19	344.75	345.62	20.3	344.17	345.62						
21	343.85	345.49	19	344.56	345.49	20.4	343.94	345.62	21.7	344.36	345.62						
22	343.9	345.49	20.2	343.72	345.49	21.5	343.89	345.62	23	345.11	345.62						
23	344.39	345.49	22	344.12	345.49	22.5	344.21	345.62	23.8	345.42	345.62						-
24	344.98	345.49	23.1	344.75	345.49	24	344.9	345.62	26	345.7							
25	345.05	345.49	24.6	345.15	345.49	25.5	345.44	345.62	28	345.55							
25.8	345.17	345.49	26	345.23	345.49	27	345.42	345.62	32	346.03							
30	345.72	345.49	28.3	345.49	345.49	32	346.05	345.62	37	346.93							
32	346.03		31	345.86		36	346.83		45.2	347.46							
38	347.02		34	346.41		43	347.35										
45	347.48		39	346.92		44.4	347.47										
			45	347.47													

XSC #19 - UT to Ellington Branch 15+39.2 (riffle)

Photo #37.

Facing east (downstream) at Cross Section #19 (2010)

	As-built			Year 1			Year 2			Year 3			Year 4			Year 5	
Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF									
0	345.83		0	345.83		0	345.86		0	345.87							
5	345.44		4	345.55		4	345.57		5	345.45							
10	344.61		9	344.76		8	344.86		10	344.72							
18	344.47	344.47	13	344.58		13	344.66		18	344.53	344.53						
18.8	343.7	344.47	18	344.67		17	344.49	344.49	19	344.2	344.53						
20	343.51	344.47	19	344	344.51	18.5	344.3	344.49	20	343.63	344.53						
21	343.56	344.47	19.5	343.9	344.51	18.8	344.06	344.49	21	343.7	344.53						
22	343.61	344.47	20.5	343.69	344.51	19.5	343.94	344.49	22	343.82	344.53						
22.7	343.69	344.47	22.8	343.76	344.51	20.8	343.63	344.49	24	344.11	344.53						
24	344.01	344.47	23	343.71	344.51	22	343.67	344.49	26	344.81							
26	344.81	344.47	23.7	343.97	344.51	23.7	344.03	344.49	30	344.94							
32	345.17		25	344.51	344.51	25.3	344.62	344.49	34	345.51							
40	346.3		26	344.77		27	344.97		40	346.32							
48.4	346.39		30	344.99		31	345.07		45	346.27							
			34	345.56		34	345.56										
			39	346.18		39	346.23										
			45	346.35		44	346.37										
						48.5	346.4										

XSC #20 - UT to Ellington Branch Sta. 16+82.0 (pool)

Photo #39.

Facing east (downstream) at Cross Section #20 (2010)

	As-built			Year 1			Year 2			Year 3			Year 4			Year 5	
Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF									
0	344.97		0	344.97		3	344.91		0	344.94							
5	344.64		4	344.76		6	344.47		5	344.65							
9	343.11		7	343.73		9	343.16		8	343.57							
15.5	342.82	342.82	10	342.97		13	343.01		10	343.02							
16	342.19	342.82	14	342.88		15.5	342.84	342.84	13	343.13							
16	341.82	342.82	15.6	342.75	342.75	16	342.36	342.84	15	342.98							
17	341.4	342.82	16.2	342.31	342.75	16.3	341.68	342.84	16	342.41	342.41						
18	341.24	342.82	16.3	341.62	342.75	17.4	341.32	342.84	16.1	341.43	342.41						
19	341.19	342.82	17	341.31	342.75	18.4	340.78	342.84	17	340.84	342.41						
20	342	342.82	18	340.68	342.75	19.5	341.37	342.84	18	340.99	342.41						
20.7	342.18	342.82	19	341.29	342.75	20.1	342.4	342.84	19	341.36	342.41						
25	342.92	342.82	20	341.9	342.75	22	342.69	342.84	20	342	342.41						
30	343.65		20.9	342.27	342.75	25	343.01	342.84	20.1	342.37	342.41						
40	344.53		23	342.57	342.75	30	343.63		21	342.79							
47	344.79		27	342.98		37	344.59		24	342.97							
			31	343.68		42	344.71		27	343.15							
			36	344.51		47.1	344.83		34	344.23							
			43	344.58					43	344.64							
			47	344.71													

XSC #21 - UT to Ellington Branch Sta. 18+64.8 (riffle)

Photo #41.

Facing north (downstream) at Cross Section #21 (2010).

	As-built			Year 1			Year 2			Year 3			Year 4			Year 5	
Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF									
0	343.35		0	343.35		0	343.35		0	343.44							
6	343.38		5	343.53		4	343.61		4	343.63							
12	342.31		10	342.7		8	343.03		8	343.12							
15	341.47		13	342.12		13	342.07		15	341.56							
21	341.38	341.38	15	341.48		16	341.42		21	341.49							
23	340.66	341.38	18	341.43		20	341.36		22	341.39	341.39						
24	340.56	341.38	20	341.34	341.34	22	341.18	341.35	23.6	340.8	341.39						
25	340.49	341.38	21.5	341.26	341.34	22.7	341.02	341.35	25	340.6	341.39						
26	340.5	341.38	22.7	340.91	341.34	23.3	340.65	341.35	26	340.58	341.39						-
27	340.53	341.38	23.4	340.6	341.34	24.5	340.53	341.35	27.3	340.81	341.39						
27.4	340.58	341.38	24	340.54	341.34	25.6	340.5	341.35	28.2	341.52							
28.1	341.54	341.38	25	340.46	341.34	26.8	340.79	341.35	33	341.42							
37	341.48		26	340.49	341.34	27.5	340.97	341.35	37	341.55							
48	343.92		27	340.64	341.34	29	341.35	341.35	39	341.8							
53	344.25		27.5	340.89	341.34	32	341.28		48	343.98							
			28	341.46		37	341.52										
			31	341.3		42	342.56										
			36	341.37		48	343.97										
			41	342.23		53	344.22										
			47	343.69													
			53	344.22													

XSC #22 - UT to Ellington Branch Sta. 19+73.0 (pool)

Photo #43.

Facing north (downstream) at Cross Section #22 (2010).

XSC	#22 -	Pool	

	As-built			Year 1			Year 2			Year 3			Year 4			Year 5	
Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF									
0	342.65		0	342.73		0	342.71		0	342.76							
3	342.5		2	342.69		2.4	342.68		3	342.63							
7	340.75		6	341.04		8	340.56		8	340.65							
12.5	340.51	340.07	9	340.58		13	340.47	340.47	13.5	340.38	340.38						
15	339.33	340.07	12	340.58		14	339.99	340.47	15	339.59	340.38						
15.3	339.19	340.07	13.5	340.24		14.6	339.74	340.47	17	338.83	340.38						
17	338.9	340.07	14.5	339.56	340.21	16	339.05	340.47	19	338.71	340.38						
18	338.75	340.07	15.5	339.16	340.21	17	338.9	340.47	19.7	338.78	340.38						
19	338.81	340.07	16.5	338.93	340.21	18	338.77	340.47	20.7	339.57	340.38						
20	339.26	340.07	17.6	338.68	340.21	19	338.77	340.47	23	339.81	340.38						
21.5	339.36	340.07	18.9	338.79	340.21	20	339.24	340.47	31	340.69	340.38						
24	339.86	340.07	20.5	339.3	340.21	22.3	339.73	340.47	41	342.33							
27	340.07	340.07	21.7	339.54	340.21	29	340.28	340.47									
32	340.77		24	339.91	340.21	34	341.15	340.47									
40	342.24		28	340.21	340.21	40	342.28										
45.4	342.19		33	341.05		42	342.3										
			39	342.2													

Photo #45.

Facing north (downstream) at Cross Section #23 (2010)

	As-built			Year 1			Year 2			Year 3			Year 4			Year 5	
Station	Elevation	BKF	Station	Elevation	BKF	Station	Elevation	BKF									
0	339.71		0	339.71		0	339.71		0	339.71							
4	339.4		4	339.43		4	339.47	338.61	4	339.42							
8	338.15		8	338.15		8	338.16	338.61	8	338.06							
15.5	338.07	338.07	11	338.24		15	338.11	338.61	11	338.1							
17	337.5	338.07	15	338.11		17	337.62	338.61	15.5	338.11	338.11						
18	337.29	338.07	16.2	337.98	337.98	18	337.29	338.61	17	337.56	338.11						
19	337.27	338.07	16.9	337.56	337.98	19	336.91	338.61	18	336.07	338.11						
20	337.05	338.07	18	337.28	337.98	20	337.04	338.61	19	335.89	338.11						
21	337.14	338.07	19	336.81	337.98	21	337.17	338.61	20.5	336.44	338.11						
22	337.15	338.07	20	337.23	337.98	22	337.14	338.61	22	337.12	338.11						
23	337.48	338.07	21.5	337.23	337.98	23.2	337.64	338.61	23.5	337.58	338.11						
26.5	338.65	338.07	23.1	337.57	337.98	25	338.33	338.61	26	338.57							
32	338.88		24.7	338.19		26	338.61	338.61	30	338.72							-
37	339.93		26	338.7		29	338.63		34	339.22							
42	339.99		30	338.79		34	339.39		39	339.77							
			33	339.07		38	339.86										
			37	339.9													
			42.2	340													

APPENDIX C-4: LONGITUDINAL PLOTS AND RAW DATA TABLES

Profile Reach 1 (EB Sta. 10+20.5 to 16+75.2)

Profile React																													
Sta.	As-B Elev	Built WS	Bankfull	Feature	Sta.	Elev	Year 1 WS	Daulafull	Feature	Sta.	Elev	Year 2 WS	Devilefull	Feature	Sta.	Elev	Year 3 WS	Bankfull	Frature	01-	Elev	Year 4 WS	Development	Feature	Sta.	Elev	Year 5 WS	Bankfull	Frature
1020.5	347.33	347.68	Bankfull	Feature	1020.5	347.28	348.03	Bankfull	reature	5ta. 1020.50	347.26	ws	Banktuli	Feature	5ta. 1020.50	347.16	347.80	Banktuli	Pool	Sta.	Elev	W5	Banktuli	Feature	Sta.	Elev	ws	Bankruli	Feature
1023.7	347.44	347.68			1030.96	347.37	347.94			1027.36	347.45		348.66	MaxD	1034.96	346.90	347.77		MaxD										
1045.5	347.33	347.68			1045.43	347.49	347.89	348.95		1038.52	347.57				1045.87	347.35	347.72		Hrif										
1056.5	347.47	347.65		H Pool	1058.45	347.3	347.73			1045.40	347.65			Hriff	1060.61	347.12	347.51		Pool										
1060.7	346.56 345.61	347.65 347.64	349.2	Max D	1064.62 1067.7	346.27	347.72	348.96		1055.50	347.45 347.36			Hpool	1071.09	344.72 346.93	347.50 347.50	348.88	XS#1										
1067.7	345.73	347.64	349.2	H Glide	1067.7	345.83	347.72	348.90		1067.33	347.36			MaxD	1081.64	345.86	347.50	348.87											
1083.2	347.51	347.59		H Riffle	1081.07	347.54	347.72			1071.53	346.72			XS#1	1119.95	346.88	347.25	348.65	Hrif										
1097.4	347.09	347.2			1097.37	346.99	347.64			1079.05	346.94			MaxD	1139.61	346.22	346.62	348.2											
1111.5	346.91	347.03			1119	346.63	347.05	348.6		1090.66	346.95		348.85		1148.06	346.44	346.44												
1121.2 1139.8	346.64 346.4	346.78 346.62			1137.76	346.49 346.3	346.84 346.59	348		1099.80	346.31 347.24		348.65		1173.91 1175.03	346.23 345.95	346.33 346.00	347.29	X-Vane										
1152.4	346.3	346.35			1171.4	346.17	346.39	340	X-Vane	1119.77	346.82		340.00		1186.91	343.95	346.00	347.29	MaxD										
1160.6	346.13	346.29		H Run	1173.8	345.29	346.18			1134.10	346.5				1193.52	345.62	345.91												
1171.4	346.17	346.24	348	X-Vane	1184.51	344.07	346.17			1149.78	346.46				1212.08	343.97	345.77	346.72	X-Vane										
1173.8	345.23	345.85		H Pool	1190.39	345.59	346.14	347.6		1159.79	346.2				1220.91	345.41	345.77		(Hrif???)										
1178.3	345.53 343.68	345.85 345.85		Max D	1202.3	345.76 343.95	345.91 345.5		X-Vane	1174.20 1174.76	346.19 345.24	345.54		X-Vane Hpool	1236.36 1251.31	344.86	345.46 345.33	346.63											
1188.7	345.56	345.83		H Glide	1218.86	344.85	345.5	347.02		1182.75	344.85	345.53		MaxD	1270.67		345.18	340.01											
1202.3	345.58	345.79		X-Vane	1232.38	344.87	345.47			1192.15	345.67				1289.37	344.53	345.33	346.27	Pool										
1205.3	345.74	345.79		H Pool	1236.3	344.81	345.3		X-Vane	1208.92	345.77			X-Vane	1297.31	341.98	345.20												
1206.3	344.28	345.1		Max D	1242.61	343.96	345.3		<u> </u>	1210.10	344.57	245.1		Hpool	1307.99	344.38	345.16	346.55	MaxC								L		
1209.3 1220.3	344.57 344.76	345.1 345.1			1251.26 1263.12	344.2 344.57	345.3 345.3	346.6		1217.12 1223.92	344.13 344.89	345.1 345.09		MaxD	1324.19 1339.28	342.43 344.04	345.22 345.25	346.62	MaxD						+				
1236.3	344.76	345	346.6	X-Vane	1203.12	344.61	345.24	540.0		1242.69	344.96	343.00		X-Vane	1353.22	344.04	345.25	340.02	MaxD										
1241	344.76	344.85		H Pool	1287.28	344.55	345.1	346.1		1245.42	344.75	344.95			1359.68	343.44	344.81		MaxD										
1244.2	344.28	344.85			1290.25	343.7	345.1			1253.86	343.84	344.93		MaxD	1370.37	342.86	344.79		MaxD										
1247.6 1253.2	344.15 343.36	344.85 344.85		Max D	1298.55 1308.34	343.34 344.65	345.1 345.1	346.4		1260.24	344.77 344.69	344.92 344.92			1380.70 1389.23	344.43 343.70	344.79 344.68	345.4	XS#2										
1253.2	343.36	344.85 344.85		H Glide	1308.34	344.65	345.1 345	346.4		1272.07 1282.05	344.69	344.92			1389.23	343.70	344.68		XS#2										
1258.2	344.38	344.85		TT Olido	1347.26	344.51	345	346.3		1290.88	344.57	344.98		Hpool	1418.25	343.87	344.46												
1277.4	344.63	344.85			1358.41	341.5	345			1297.38	342.67	344.96		MaxD	1428.70	343.65	344.30		Pool										
1290	344.6	344.85		H Pool	1365.11	342.36	345			1307.38	344.27	344.94			1439.24	342.48	344.36		MaxD										
1298.5 1303.8	343.73 344.42	344.85 344.85		Max D H Glide	1375.46 1385	344.39 344.56	345.03 344.9	345.6		1319.60 1323.53	343.95 341.91	344.92 344.91			1454.91 1475.38	343.59 343.20	344.29 344.12	344.7											
1303.8	344.42	344.85	346.2	H Gilde	1385	344.50	344.9	345.6		1323.53	341.91 342.98	344.91		MaxD	1475.38	343.20	344.12	344.7	Pool										
1327.9	344.33	344.73	010.2	H Run	1398.16	343.82	344.41			1341.09	344.79	344.88		maxa	1491.98	342.33	344.05	010.10	1 001										
1344	344.11	344.71		H Pool	1415.2	343.69	344.38	345.5		1353.32	344.44	344.63			1501.00	343.54	344.00												
1349.4	343.77	344.71			1425.82	343.37	344.4			1361.25	343.57	344.64			1516.84	343.24	343.82		Pool		343.85								
1355.8 1364.4	342.51 341.9	344.71 344.71		Max D	1436.14	341.97 341.48	344.4 344.4			1370.95	343.44	344.61 344.59			1530.01	341.87	343.85 343.70		MaxD Hrif										
1370.9	344.01	344.71		H Glide	1454.01	343.73	344.3	345.3		1379.52	344.43	344.39	345.72	XS#2	1550.07	343.43	343.64		FILL										
1381.2	344.47	344.71	346.1	H Riff	1463.55	343.67	344.2	010.0		1401.98	343.97	344.01	010.72	Nonz	1575.02	342.88	343.62	010.11											
1385	344.52	344.7			1479.66	343.55	344.2	345.23		1413.72	344.02				1595.09	343.10	343.54												
1398.9	343.82	344.05		H Run	1482.73	343.53	344.2			1421.84	343.83				1608.92	342.25	343.55		100.00										
1413.2 1424.1	343.7 343.39	344.05 344.03		H Pool	1487.16 1494.69	341.94 343.32	344.2 344.1			1430.09 1440.93	343.47 341.76	343.8 343.81	345.03	Hpool MaxD	1622.49 1629.16	340.59 342.88	343.58 343.50	344.34	XS#3										
1424.1	343.39	344.03		ri Fuul	1507.85	343.32	344.1			1440.93	341.76	343.81	340.03	IVIALU	1629.16	342.88	343.50	344.36											
1439.6	341.51	344.03		Max D	1518.68	342.92	343.86			1460.56	343.58	343.84			1677.09	342.44	343.03	344.19											
1447.3	343.43	344.02		H Glide	1527.45	341.44	343.85			1478.39	343.61	343.84	343.25		1706.17	342.30	342.80		Pool										
1453.9	343.79	344.02	345.6		1536.66	343.52	343.85	345		1485.38	343.27	343.84		HPool	1715.14	341.00	342.70		MaxD						ļ				
1467.1 1481.5	343.75 343.47	343.93 343.88			1553.56 1568.83	343.18 343.05	343.48	344.65		1488.63 1496.92	342.19	343.83 343.85		MaxD	1722.99	342.23	342.67 342.67	344.54											
1486	342.14	343.88			1590.37	342.96	343.32	011.00		1510.62	343.26	343.84				0.12.00	0.2.0/	011.04	1										
1492.3	342.83	343.88			1607.13	342.63	343.3			1520.72	342.97	343.54		Hpool															
1495.7	343.49	343.88			1617.09	342.23	343.3			1524.56	341.62	343.56																	
1510.2 1518.2	343.35 343.04	343.8 343.8	345.6		1625.2 1626.96	340.78 341	343.3 343.3	L		1535.64 1553.18	343.2 343.11	343.56 343.29	345.13	Hriff	ļ	l	I								ļ				
1518.2	343.04	343.8			1626.96	341 342.9	343.3			1553.18	343.11 343.03	343.29	344.93	+	<u> </u>		I	1							+				
1531.3	342.84	343.8			1646.72	342.9	343.22			1589.39	343.03	343.23	344.33		1	1	1	1	1										
1535.8	343.45	343.8	345.1		1663.65	342.51	343.15	344.37		1606.19	342.56	343.22				1		1											
1553.5	343.03	343.3			1678.03	342.51	343.03			1614.74	342.44	343.22																	
1575.8	342.98	343.2	044.0			<u> </u>	l	L		1621.90	340.86	343.24	345.02	XS #2	ļ		I								ļ				
1588.9	342.89 342.68	343.14 343.03	344.8						<u> </u>	1633.14 1648.38	342.58	343.23 343.02																	
1614.4	342.60	343.03				1	1			1670.13	342.49	343.02	344.26		1		1	1											
1625.2	341.07	343.02								1690.08	342.5	342.74																	
1629.4	342.35	343.01								1710.13	342.1	342.62																	
1644.8	342.74	342.94								1713.93	341.35	342.64				ļ	<u> </u>												
1663.7 1675.2	342.52 342.49	342.78 342.74	344.2							1721.25 1733.15	342.31 342.31	342.65 342.55	344.12																
1010.2	- 12.10	5-16-1-1	011.2			1	1				5-12.01	012.00	011.12		1		1	1	1										
												•		•											•				

Profile Rea	ch #2																												
		As-Built					Year 1					Year 2					Year 3					Year 4					Year 5		
Sta.	Elev	WS	Bankfull	Feature	Sta.	Elev	WS	Bankfull	Feature	Sta.	Elev	WS	Bankfull	Feature	Sta.	Elev	WS	Bankfull	Feature	Sta.	Elev	WS	Bankfull	Feature	Sta.	Elev	WS	Bankfull	Feature
1862.9	341.86	342.01	343.3		1862.9	341.83	342.36	343.25		1862.90	341.93	342.10			1862.90	341.92	342.49	343.22											
1874.7	341.71	341.92			1874.7	341.78	342.31	343.21		1872.33	341.75	342.05	343.22	XS	1870.91	341.69	342.40	343.24	XS#4										
1889	341.68	341.86			1894.72	341.58	342.15	343.07		1882.52	341.64	342.00			1886.59	341.48	342.31		Pool										
1900.6	341.37	341.81			1910.13	341.6	342.15	343.22		1898.09	341.29	341.90			1897.50	340.90	342.28		MaxD										
1918.3	341.58	341.79	343.14		1921.18	341.68	342.05	342.96		1921.22	341.58	341.82	343.02		1913.19	341.54	342.19	343.10											
1931.2	341.37	341.63			1933.97	341.46	341.95			1933.20	341.49	341.70			1929.61	341.22	342.00												
1944.3	341.23	341.44			1946.92	341.1	341.8	342.8		1948.48	340.73	341.44	342.94		1943.38	340.70	341.96	1	Pool				1						
1953.8	340.74	341.42			1954.2	340.72	341.8			1962.01	341.14	341.60			1947.31	339.92	341.95		MaxD										
1963.6	341.03	341.36			1961.19	341.31	341.73			1976.55	341.37				1958.25	341.02	341.81												
1986.5	340.98	341.25			1978.43	341.02	341.7	342.76		1988.78	340.63	341.39	342.66		1969.18	341.02	341.81	342.60											
1994.4	339.66	341.23			1987.66	340.84	341.65			1994.96	339.91	341.42		MaxD	1986.44	341.01	341.80	342.84	Pool										
2002	340.73	341.23			1995.68	339.91	341.65			2003.27	341.01	341.40			2001.68	339.20	341.82		MaxD										
2019.3	340.94	341.21			2002.42	340.93	341.65	342.55		2013.88	341.04	341.40			2010.67	340.99	341.81												
2039.9	340.92	341.15			2015.33	340.94	341.62	342.33		2024.81	340.99	341.31	1		2019.83	340.97	341.66	1	Hrif										
2056.4	340.81	341.07	342.4		2029.96	340.96	341.53			2038.09	340.90	341.23			2036.57	340.86	341.49	342.30											
2068.7	340.7	340.94			2047.18	340.86	341.44	342.55		2061.32	340.76	341.12	342.56		2059.58	340.53	341.20	342.63											
2082.2	340.5	340.78			2061.58	340.82	341.29			2083.51	340.35	341.01	1		2073.98	340.31	341.06	1											
2090	339.74	340.7			2072.97	340.7	341.21			2089.31	339.75	340.97		MaxD	2091.72	340.42	340.89												
2096.4	340.38	340.7			2087.29	340.55	341.18			2104.87	340.49	340.81	342.22		2096.02	339.40	340.83	1											
2106.4	340.39	340.63	341.2		2091.66	339.79	341.16			2123.75	340.10	340.42	341.50		2114.64	340.19	340.69		Hrif										
2121.4	340.15	340.33			2098.26	340.51	341.11			2136.08	339.92	340.09	341.44		2130.44	340.02	340.36	341.23											
2139.4	339.75	339.93			2109.05	340.67	341.03			2146.10	338.75	340.00	1	XS	2142.58	339.77	340.21	1	Pool										
2147.3	338.51	339.91			2123.93	340.25	340.61	341.4		2156.23	339.71	340.05	1		2151.73	338.01	340.20	341.27	XS#5										
2153.3	338.79	339.91			2135.23	339.92	340.37	341.22		2168.68	339.67	339.92	1		2159.87	339.63	340.19	1											
2165.8	339.63	339.85			2140.37	339.71	340.31			2181.15	339.56	339.75	340.90		2173.76	339.56	340.17												
2177.1	339.56	339.8	341		2147.3	339.2	340.31	341.16		2192.76	339.55	339.69	1		2202.46	339.38	339.96	341.13											
2188.1	339.54	339.7			2152.82	338.81	340.3			2204.79	339.30	339.57			2232.41	339.02	339.82												
2198.7	339.45	339.64			2159.33	339.82	340.34			2221.19	339.30	339.50	340.99		2244.53	338.70	339.58		Pool										
2207.8	339.36	339.46			2179.62	339.56	340.07			2235.22	339.04	339.37	1		2253.19	337.56	339.53	340.72	MaxD										
2216	339.28	339.42	340.92		2196.52	339.58	339.93			2246.36	338.11	339.32			2263.52	338.63	339.50												
2227.4	339.26	339.37			2215.97	339.28	339.81			2257.20	338.93	339.32	340.80		2277.51	338.53	339.56	1											
2236.8	339.02	339.3			2235.48	339.08	339.71			2270.48	339.09	339.29			2299.18	338.64	339.48	1				1	1						
2250	337.96	339.3		1	2243.62	338.73	339.61	340.89	1	2291.54	339.02	339.18		1	2313.18	336.82	339.46		MaxD							1			
2257.6	339.15	339.3			2250.89	338.21	339.61			2304.43	338.65	339.01			2327.58	338.13	339.43	340.60											
2271.1	339.05	339.29	340.8		2258.79	339.09	339.61			2323.00	338.51	339.05		MaxD	2350.26	338.67	339.46												
2285	338.99	339.18			2275.49	339.15	339.54	340.77		2340.39	338.86	339.05	340.17		2374.97	338.30	339.12		Pool										
2295.8	338.9	339.12		1	2295.8	338.88	339.32		1	2356.40	338.77	338.96	340.10	1	2385.05	336.71	339.09	340.00								1			
2307.5	338.96	339.06			2305.09	338.81	339.24			2372.88	338.68	338.90	340.03		2393.95	338.54	339.13												
2314.2	338.72	338.96			2312.4	338.02	339.21			2385.44	337.06	338.89		MaxD															
2321.5	338.83	338.95		1	2324.56	338.7	339.21	1	1	2396.79	338.57	338.78	1	1	1		1	1	1	1	1	1	1	1	1	1		1	
2331.9	337.55	338.95		1	2343	338.69	339.2	340.14	1					1												1			
2338.6	338.33	338.95		1	2359.53	338.86	339.06	340.11	1				1	1	1		1	1	1	1	1	1	1	1	1	1		1	
2347.9	338.83	338.95	340.41		2375.9	338.44	338.94		1				1					1	1				1						
2359.3	338.69	338.87		1	2382.7	336.96	338.92	1	1	1			1	1	1		1	1		1	1	1	1	1	1	1		1	
2371	338.6	338.85			2396.3	338.68	338.87	339.98	1				1					1	1				1						
2385	337.7	338.85		1									i i	1			1	1				1	1			1			
2389.3	337.98	338.85		1			1	1	1				1	1	1		1	1	1	1	1	1	1	1	1	1		1	
2396.3	338.67	338.83	340.13	1			1	1	1	1			1	1	1		1	1		1	1	1	1	1	1	1		1	

Profile Reach 3 (EB Sta. 29+33.9 to 36+85.3)

Profile Rea	ch #3																												
-		As-Built		_			Year 1		_			Year 2		_			Year 3		r _			Year 4					Year 5		
Sta.	Elev	WS	Bankfull	Feature	Sta.	Elev	WS		Feature	Sta.	Elev	WS		Feature		Elev	WS	Bankfull	Feature	Sta.	Elev	WS	Bankfull	Feature	Sta.	Elev	WS	Bankfull	Feature
2933.9 2956.3	335.24 334.69	335.4 335.3	336.96		2933.9 2954.95	335.32 334.84	335.56 335.51	336.85		2933.90 2950.81	335.32 334.92	335.57 335.49	336.80		2933.90 2950.67	335.50 335.02	335.95 335.33	336.71											↓
2930.3	333.58	335.3	336.7		2954.95	334.04	335.51			2956.53	334.92	335.49	336.81		2950.67	334.44	335.33		Pool										
2979.1	333.02	335.3	330.7		2977.87	333.02	335.51			2974.70	333.56	335.45	336.70		2974.70	333.73	335.23	336.53	XS #8										
2984.9	334.14	335.3			2987.24	334.47	335.51			2985.30	334.08	335.49	000.10	MaxD	2987.09	334.98	335.29	000.00	710 110										
2989	335.07	335.2			2994.35	335.11	335.45	336.62		2996.53	335.00	335.46			3003.47	334.53	335.17	336.57											
2995.4	335.06	335.16	336.6		3005	335.04	335.45			3011.98	334.86	335.30			3020.18	334.44	335.18		Pool										
3015.5	334.83	335.1			3015.81	334.89	335.44	336.64		3019.79	334.28	335.29		MaxD	3025.98	334.40	335.15		MaxD										
3030	334.79	335.1			3022.49	334.15	335.44			3031.85	334.92	335.31			3035.64	334.85	335.06	336.30	Hrif										
3033.8	334.6	335.1	336.5		3029.98	334.95	335.44			3044.34	333.73	335.04			3045.44	334.76	335.00		Pool										1
3045.9 3046.8	334.83 333.9	335			3043.93 3049.94	334.93	335.16 335.1	336.5		3048.29	333.50 334.59	335.03 334.89		MaxD	3048.03	333.09 333.03	334.95		MaxD										ł
3046.8	333.9	334.9 334.8			3049.94	333.79 334.59	335.1	336.4		3056.96 3076.65	334.59	334.89			3054.96	333.03	334.90 334.92		MaxD										L
3057.5	334.49	334.72	336.2		3073.33	334.48	334.83	330.4		3086.55	333.38	334.83			3072.35	334.61	334.91	335.73	Pool										ł
3074.2	334.29	334.66	000.2		3078.65	333.39	334.8			3110.05	334.28	334.67	335.74		3085.19	332.08	334.90	000.10	MaxD										
3085.2	333.19	334.6			3086.45	334.02	334.8			3126.03	334.09	334.39			3096.90	334.13	334.87												
3097.8	333.51	334.6			3097.14	333.77	334.76	335.9		3147.92	333.81	334.04	335.65		3111.87	334.48	334.84												
3111.3	334.28	334.54	336.09		3122	334.14	334.48	336		3163.30	333.50	334.05	335.42		3121.98	333.72	334.50	336.21	Pool										
3139	333.95	334.1			3145.57	333.82	334.17			3175.47	333.69	334.03			3128.01	333.30	334.50		MaxD										1
3153.8	333.41	334.04			3158.04	333.53	334.1			3203.25	333.46	333.97			3146.87	333.83	334.37	L											1
3170.7 3183.6	333.39 333.49	334.03 334.03	l		3166.57 3183.54	333.31 333.6	334.12 334.1	335.7	<u> </u>	3214.42 3235.36	333.76 331.95	333.87 333.39	224.00	MaxD	3161.92 3176.97	333.43 332.89	333.91	335.57	Pool				l				l	L	└───
3183.6	333.49	334.03			3183.54 3188.34	333.6	334.1 334.1	335.1		3235.36	331.95	333.39	334.90	MaxD	31/6.9/ 3192.80	332.89	333.92 333.90	335.57	XS #9										l
3188.3	332.4	334.03			3188.34	332.24	334.1	330.1		3251.47	333.20	333.38	334.69		3192.80	332.09	333.90	335.08	V9 #3										t
3196.8	332.49	334.03			3201.04	333.28	334.1			3287.68	332.37	332.76	333.96		3216.14	333.29	333.73	333.00											ł
3201	333.28	334.03			3216.14	333.75	333.98			3297.30	331.10	332.72			3238.49	332.90	333.24		Pool										
3213.3	333.74	334	335.5		3225.27	333.06	333.72	334.92		3306.68	331.89	332.68			3241.05	330.30	333.23		MaxD										
3234.6	333.36	333.53			3233.29	333.3	333.7			3321.05	332.35	332.63			3248.40	329.27	333.23		MaxD										
3240.9	332.14	333.52			3238.3	331.69	333.7			3343.99	332.01	332.38	333.67		3255.75	332.78	333.23												1
3248.9	332.06	333.52			3251.07	331.64	333.7			3362.10	331.77	332.34			3268.59	332.93	333.08	334.25											
3251 3263.6	333.28	333.52	335.2		3253.37	333.3	333.65	334.82		3374.53 3383.19	329.59	332.27 332.48			3288.15	332.54	332.84	334.00	Pool										
3263.6	333.28 332.52	333.45			3261.08	333.28 333.17	333.5 333.39	334.82		3383.19 3401.95	331.81	332.48	334.01		3295.57 3304.03	329.99	332.86 332.85	333.91	MaxD										
3292.4	331.08	332.63			3287.34	332.68	332.78			3401.95	332.00	332.47	334.01		3316.07	329.29	332.85	333.91	WidXD										
3306	331.16	332.62			3294.51	331.18	332.75			3439.16	331.25	332.27			3329.94	332.37	332.67												
3311.8	332.34	332.62	334.04		3305.1	331.49	332.75			3454.15	331.25	332.24			3347.37	332.14	332.50	333.88											
3341	332.03	332.56			3314.65	332.31	332.68			3464.73	331.11	332.25	333.17		3365.61	331.97	332.51		Pool										
3356	331.8	332.56			3325.25	332.42	332.65			3482.46	331.83	332.20			3372.39	330.68	332.52		MaxD										
3365.8	331.88	332.54			3338.9	332.62	332.6	334.3		3495.97	331.44	332.15	333.72		3382.04	331.08	332.46		MaxD										1
3375.6	330.09	332.54			3359.34	332.08	332.6	334.2		3514.52	331.82	332.03			3389.36	331.20	332.49	333.86											1
3384.3 3410.4	332.04 332.44	332.54 332.54	333.7		3376.85	329.89	332.6 332.6	334.1		3523.71	331.72 330.08	331.95 331.92			3402.16 3410.40	332.25 332.08	332.51 332.20	333.85	Hrif XS #10										L
3410.4	332.44	332.54	333.7		3399.14 3410.36	331.75 332.08	332.0	334.1		3529.18 3536.36	330.08	331.92	332.99		3410.40	332.08	332.20	333.85	Pool										
3431.4	331.97	332.3			3418.24	332.00	332.6	333.0		3546.73	331.68	331.96	332.33	MaxD	3433.12	330.30	332.06		MaxD										
3450	331.5	332.27			3433.37	332.05	332.4			3555.23	331.54	331.96			3447.70	330.37	332.07		MaxD										
3453.6	331.03	332.27			3449.44	331.77	332.37	333.6		3570.95	331.11	331.84			3459.76	330.75	332.08	333.60											
3462.5	331.36	332.25			3452.44	331.57	332.37			3584.64	329.12	331.78		MaxD	3473.68	331.74	332.07												
3471.2	331.99	332.25			3456.6	330.4	332.37			3596.33	331.41	331.80			3492.25	331.00	332.00												1
3482.9	331.86	332.02	333.6		3462.91	331.54	332.37	L		3607.95	331.39	331.62	333.15		3509.77	330.99	331.86	L	Deal			L	L	L			L	L	<u> </u>
3500 3513.9	331.64 331.44	332.02 332.02	l		3478.02 3490.37	331.92 331.73	332.37 332.31		<u> </u>	3623.17 3638.50	331.20 330.38	331.35 331.04			3516.81 3529.51	331.07 329.49	331.96 331.95	222.20	Pool MaxD				l				l	L	└───
3513.9	331.44 331.7	332.02			3490.37 3498.75	331.73	332.31		<u> </u>	3638.50	330.38	331.04 331.15			3529.51 3535.71	329.49	331.95 331.98	333.20	MaxD										<u> </u>
3527.9	330.68	332.02			3490.75	332.15	332.33			3668.80	329.30	331.15			3548.41	331.33	331.90	333.37	1										<u> </u>
3531.4	331.38	332			3523.57	332.08	332.3			3685.30	330.24	331.10	332.70		3578.01	330.46	331.92	223.07	MaxD										
3544.6	331.38	331.96			3529.31	330.32	332.3	333.4							3587.16	329.91	331.92	332.63	MaxD										1
3556.5	331.58	331.91	333.3		3548.24	331.75	332.3								3599.92	331.49	331.88												
3568.6	331.65	331.91			3557.54	332.16	332.3								3614.58	330.92	331.34		Pool										
3575.8	331.29	331.91			3572.81	331.92	332.3								3617.46	328.94	331.32		MaxD										1
3583.4	329.3	331.9			3579.9	331.51	332.3								3626.53	329.47	331.36	L	MaxD										1
3590	330.6	331.9	000.0		3585.72	329.37	332.3	000.0							3634.42	331.00	331.31	000.07	VO #42										
3599.7 3615.8	331.38 331.07	331.9 331.36	332.9		3594.77 3610.62	331.81 331.92	332.3 332.1	333.3	<u> </u>						3655.60 3666.80	329.73 329.89	331.30 331.27	332.31	XS #11										├ ──
3615.8	331.07	331.30			3625.12	331.92	332.1								3676.80	329.89	331.27	332.17											t
3642.5	330.84	331.25			3646.2	330.48	331.0								3685.30	330.61	331.11	332.17											+
3650.3	328.98	331.16			3656.67	329.59	331.2									000.00	001.11	1	1				1						<u> </u>
3655.6	329.21	331.16			3662.93	329.15	331.2									1			1										
3668.7	329.79	331.16			3672.98	330.76	331.2	332.6																					
3672	330.81	331.1			3685.3	330.63	331.2	332.4																					
3685.3	330.72	331.05	332.3				1									1			1										1

Profile Reach 4 (EB Sta. 43+49 to 46+96.8)

🔶 As-Built Thalweg 🔺 As-Built Bankfull 🗕 2008 Thalweg 🔹 2008 Bankfull 🛶 2009 Thalweg 🔺 2009 Bankfull 🔶 2010 Thalweg 🛶 2010 Water Surface 🔹 2010 Bankfull

Profile Reach #4	
------------------	--

		As-Built					Year 1					Year 2					Year 3					Year 4					Year 5		
Sta.	Elev	WS	Bankfull	Feature	Sta.	Elev	WS	Bankfull	Feature	Sta.	Elev	WS	Bankfull	Feature	Sta.	Elev	WS	Bankfull	Feature	Sta.	Elev	WS	Bankfull	Feature	Sta.	Elev	WS	Bankfull	Feature
4349	327.07	327.6			4349	327.39	327.8	328.7		4349.00	327.06	327.66			4349.00	327.35	327.63												
4361.1	326.94	327.4	328.9		4358.94	327.26	327.7			4356.10	326.72	327.68			4363.02	327.40	327.63	328.76											
4370.9	327.04	327.3			4369.29	326.82	327.55			4361.04	327.39	327.62			4368.53	327.16	327.48		Pool										
4377.2	326.83	327.15			4385.61	326.85	327.48	328.48		4371.10	327.14				4373.07	325.68	327.47		MaxD										
4404.8	326.79	327.04			4391.51	326.82	327.46			4376.33	326.29	327.34		MaxD	4381.61	326.79	327.47												
4416.5	326.82	327			4406.2	326.21	327.26			4392.28	326.62	327.32			4396.45	327.02	327.49												
4422.4	326.8	326.98	328.4		4422.4	325.91	327.12			4403.62	326.94	327.31			4407.63	326.33	327.23												
4427.4	326.74	326.93			4427.81	326.78	327.08			4411.83	325.63	327.28		MaxD	4415.71	325.68	327.22		MaxD										í l
4428.6	325.82	326.93			4429.07	325.47	327.05			4429.17	326.87			X-Vane	4422.40	326.24	327.25	328.45	XS#14										1
4438.7	325.89	326.82			4434.49	324.95	326.98			4430.85	326.15	327.30		Hpool	4428.67	326.91	327.10		X-Vane										
4447	326.38	326.79			4443.03	326.53	326.98	327.78		4434.07	325.02	327.27			4429.34	326.46	327.07		Pool										1
4462.4	326.08	326.5			4456.28	326.15	326.9			4441.33	325.61	327.29		MaxD	4435.62	325.38	327.09		MaxD										1
4477.7	326.23	326.5			4459.23	325.51	326.9			4445.26	326.69	327.29	328.69		4444.74	326.36	327.08												1
4486	324.97	326.44			4464.59	325.43	326.87	327.64		4460.67	325.81	327.28			4457.54	326.18	327.04	328.53	Pool										í l
4492	325.55	326.44			4471.11	325.99	326.87			4466.11	325.40	327.35	329.29		4465.79	325.46	327.04		MaxD										1
4495.5	326.26	326.44			4478.33	326.05	326.85			4480.05	326.35	327.18	328.35		4472.40	326.59	327.00												
4510	326.16	326.44			4482.5	325.03	326.81			4490.82	324.75	327.13		MaxD	4477.90	326.50	326.99	328.44	Pool										(
4523.3	326.19	326.37	327.7		4489.38	326.26	326.81			4497.72	326.45	327.12	328.20		4484.74	324.73	326.93		MaxD										í l
4540.2	326.02	326.32			4503.1	326.17	326.8			4512.79	326.12	327.12			4491.78	326.51	326.84	328.16	Hrif										1
4555.6	326	326.27			4523.32	326.05	326.72			4530.92	326.14	327.11	327.96		4511.04	325.94	326.40												í l
4568.4	325.91	326.16	327.6		4536.14	325.91	326.7	327.6		4541.61	324.49	327.08		MaxD	4530.56	325.74	326.39		Pool										í
4585.3	325.48	325.82			4549.8	325.94	326.66	327.57		4553.89	325.91	327.09			4540.50	324.62	326.40		MaxD										(
4588	324.86	325.82			4553.83	325.09	326.64			4567.16	325.98	327.08			4549.95	326.23	326.34												í l
4591.6	325.5	325.82			4576.3	325.75	326.4			4577.49	325.13	327.06	327.79	MaxD	4569.48	325.62	326.32	327.37											(
4593.9	325.69	325.82			4585.37	325.24	326.25			4595.09	324.68	327.10	327.64	MaxD	4584.77		326.36		Pool										(
4603.2	325.52	325.77	327.3		4591.83	324.75	326.24	327.6		4606.46	325.68	327.06			4591.62	324.73	326.32	327.59	MaxD										1
4619.1	325.44	325.72			4599.05	325.76	326.2			4618.10	324.97	327.05		MaxD	4600.72	325.89	326.32												í l
4643.5	325.39	325.7	327.1		4611.03	325.75	326.17	327.3		4634.33	325.25	327.05			4608.20	325.54	326.29		Pool										1
4656.3	325.38	325.7			4625.17	325.6	326.16	327.3		4648.97	325.39	327.05			4610.71	324.89	326.29		MaxD										(
4668.5	323.07	325.7			4639.01	325.53	326.11			4666.01	324.18	327.05		MaxD	4616.58	325.74	326.27												1
4673.6	323.55	325.7			4661	325.4	326.06			4671.99	323.12	327.05		MaxD	4633.58	325.66	326.02												
4679.1	323.46	325.7			4672.42	323.55	326.06			4688.65	325.46	327.01			4654.81	325.11	325.87	326.87	Pool										1
4683.6	325.31	325.7			4678.97	323.43	326.05			4696.80	325.41	327.01			4665.87	324.01	325.86												
4696.8	325.35	325.7	327		4679.1	322.89	326.05								4679.10	324.29	325.86	326.91	XS#15										
					4696.8	325.56	325.97	326.86							4686.10	325.48	325.86		Hrif										
															4696.80	325.37	325.68	326.87											1

		As-Built					Year 1					Year 2					Year 3					Year 4					Year 5		
Sta.	Elev	Bankfull	WS	Feature	Sta.	Elev	Bankfull	WS	Feature	Sta.	Elev	WS	Bankfull	Feature	Sta.	Elev	WS	Bankfull	Feature	Sta.	Elev	Bankfull	WS	Feature	Sta.	Elev	Bankfull	WS	Feature
1203.5	346.14	347.1	346.31		1203.5	346.21		346.51		1203.50	346.27	346.40	347.38		1203.50	346.35	346.48	347.25											
1212.4	346.02		346.27		1213.76	346.1	0.40.00	346.45 346.41		1210.93	346.09	346.33			1207.70	346.31	346.49	0.47.00											-
1224.2 1230.8	345.94 345.9	346.97	346.27 346.27		1224.33 1229.58	345.94 345.9	346.98	346.41		1220.46 1228.10	345.96 345.93	346.29 346.24	347.09		1221.50 1235.10	346.25 346.21	346.42 346.45	347.03 346.67	XS#17										+
1235.1	345.64	540.37	346.24		1235.25	345.91	346.97	346.39		1235.10	345.87	346.25	547.03	XS	1246.65	346.05	346.25	340.07	Pool										+
1246.4	345.75		346.23		1242.66	345.54	010.01	346.39		1250.09	345.62	346.23	346.79	7.0	1258.90	345.17	346.25	346.83	MaxD										-
1252.2	345.38		346.23		1249.91	345.79		346.37		1256.84	345.81	346.22			1265.60	345.96	346.25												1
1258.8	345.1		346.23		1259.07	345.16	346.78	346.37		1275.00	345.99	346.10			1273.69	345.84	346.04	346.62											
1270.8	345.8	346.8	346.2		1265.57	346.06		346.32		1285.68	345.35	345.90			1278.89	345.77	345.97	346.80	Pool										_
1276.2 1282.8	345.55 345.44		346 345.9		1274.7 1280.2	345.82 345.07	346.7	346.13 346.1		1299.18 1315.70	345.51 345.40	345.88 345.68	346.55		1281.89 1293.89	345.43 345.40	346.04 345.93	346.80	MaxD										
1282.8	345.56	346.7	345.9		1280.2	345.07	346.7	346.08		1315.70	345.40	345.65	346.38	MaxD	1293.89	345.63	345.93	346.51	-										
1307.9	345.50	340.7	345.5		1208.45	345.72		346.06		1321.30	344.99	345.57	340.30	WidXD	1319.39	345.47	345.76	340.01	-										-
1314.2	345.31	346.4	345.5		1315.04	345.35	346.43	345.71		1343.09	344.97	345.52	346.08		1331.29	345.44	345.65												1
1322.2	344.6		345.5		1320.42	344.8		345.7		1355.18	345.00	345.52			1346.59	345.00	345.54												1
1327.2	345.2		345.4		1325.8	345.4	346.21	345.68		1368.55	344.89	345.42			1361.29	345.06	345.48	346.01											1
1337.2	344.83		345.3		1337.19	344.88	345.92	345.62		1375.20	343.89	345.42	345.62	XS	1369.99	345.09	345.42	L	L	L					L				1
1353.8	344.96	345.9	345.2		1346.81	344.75		345.59		1385.05	344.95	345.38	ļ	L	1375.20	344.17	345.42	345.62	XS#18	L	ļ		L	ļ	L	L			+
1366.4 1375.2	344.86 343.85	345.8	345.2 345.15		1357.26 1369.73	345 344.93	 	345.58 345.48		1399.60 1413.22	344.50 344.77	345.24 345.23	l		1382.60 1392.60	344.90 345.02	345.40 345.22			<u> </u>				l	<u> </u>				+
13/5.2	343.85	345.8	345.15		1369.73	344.93 343.72	345.89	345.48		1413.22	344.77	345.23 345.15	345.91	MaxD	1392.60	345.02	345.22 345.07	345.79	Pool					l					+
1394.9	344.76	345.6	345.15		1375.55	343.84	343.08	345.48		1422.41	344.70	345.15		MIGAL	1409.15	344.94	345.07	343.78	MaxD					1		1			+
1411.9	344.82	040.0	345.12		1388.56	344.69	345.7	345.4		1447.91	344.30	344.54	0.00		1419.35	344.04	345.05	1	MaxD					1					1
1422.8	344.35		345.12		1400	344.4	345.61	345.36		1457.91	344.02	344.57	345.11		1428.15	343.99	345.07	345.56	MaxD										1
1433	344.81		345.11		1416.04	344.59		345.25		1466.41	344.28	344.56			1434.47	344.79	345.02												
1443.9	344.33		344.45		1429.37	344.7		345.2		1477.51	343.35	344.49	344.84	MaxD	1450.27	344.40	344.48	345.16											
1454.3	344.26	345.3	344.43		1444.02	344.28		344.88		1484.01	343.95	344.44			1456.47	343.86	344.46		MaxD										-
1464.4	344.04		344.2		1455.19	344.44		344.74		1494.99	343.80	344.46			1472.69	344.18	344.39	344.87	Pool										
1471.8	343.89 343.01	344.9	344.1 344.1		1469.59 1472.95	343.97 343.9	345.29	344.53 344.46		1503.59 1516.54	344.05 343.14	344.37 344.31	344.58		1480.88 1487.78	343.56 344.14	344.40 344.41												4
14/6./	343.01	344.9	344.1		1483.8	343.59		344.46		1524.14	343.76	344.37	344.30		1508.38	344.02	344.41	344 75	Pool										+
1495.6	343.85	344.7	344		1494.37	343.85	344.92	344.41		1539.20	343.63	344.06	344.49	XS	1523.68	343.55	344.29	344.60											-
1508.6	343.63		343.8		1505.88	343.8		344.28		1554.70	343.43	344.01			1539.20	343.63	344.20	344.53	XS#19										1
1514.2	343.21		343.8		1513.53	343.45	344.73	344.28		1565.35	343.53	343.88			1544.93	343.65	344.10												
1520	342.72		343.8		1520.71	342.66		344.25		1570.85	342.53	343.85	344.35	MaxD	1550.13	342.38	344.06	344.58	MaxD										
1522.5	343.03		343.8		1530.78	343.82	344.68	344.16		1578.80	343.31	343.81			1557.63	343.75	344.05												
1529.2 1539.2	343.57 343.51	344.6	343.8 343.7		1539.06	343.69 343.47	344.67	344 343.94		1589.10 1599.90	343.26 342.44	343.65 343.63	344.19		1565.08	343.55 342.57	343.95 343.90	344.17	MaxD										-
1539.2	343.51		343.7		1544.16	343.47		343.94		1609.40	342.44	343.63	344.19		1572.68	342.57	343.90		MaxD										
1543	343.44		343.7		1559.41	343.51	344.41	343.90		1609.40	343.05	343.48			1594.63	343.24	343.69		Pool										+
1554	342.92	344.4	343.7		1575.5	343.45		343.84		1633.50	342.97	343.55	344.22		1605.96	342.40	343.41	344.11	MaxD										1
1558.2	343.35		343.6		1587.52	343.24	344.19	343.55		1651.20	342.01	343.01		MaxD	1615.26	342.88	343.34			i i					i i	i i			1
1565.4	343.29		343.6		1596.5	342.92		343.56		1664.70	342.37	342.67			1625.38	342.90	343.23		Pool										T
1570	342.54		343.6		1603.71	342.41	343.97	343.56		1672.40	342.22	342.53			1628.49	341.98	343.22	343.85	MaxD					1					4
1573.9	342.95		343.6		1610	342.99		343.54		1682.00	340.78	342.40	342.83	XS	1636.71	343.10	343.20	343.80	<u> </u>	L	ļ		L	ļ	L	L			+
1576.8 1587.6	343.34 343.12		343.6 343.4		1621.94 1626.77	343.13 343.12	242.04	343.51 343.49		1688.88	341.85	342.40	242.00		1644.51 1653.21	342.87 341.90	342.95	242.60		<u> </u>				l	<u> </u>				+
1587.6	343.12		343.4		1626.77	343.12	343.94	343.49		1697.30	341.85	342.40	342.90		1653.21	341.90	342.80 342.79	343.60		-					-				+
1603.5	342.34	344.1	343.3		1643.42	342.96		343.28					1		1673.11	342.03	342.43	1	Hrif	1				1	1	i			1
1612.6	343.02		343.3		1647.83	342.77	1	342.98					1		1682.00	340.84	342.41	342.80	XS#20	1				1	1	İ.			1
1621.4	342.97		343.3		1655.68	341.53	343.92	342.98							1689.90	342.00	342.38												
1625.9	343.04		343.3		1658.89	342.56		342.9							1697.30	341.91	342.30	342.65											
1629.3	341.99		343.3		1673.22	342.1	343.24	342.41					<u> </u>		L			L	1					l					+
1632.8	342.94	244	343.3		1682.47	341.1	 	342.36					l							<u> </u>				l	<u> </u>				+
1637.9 1645.6	342.95 342.98	344	343.2 343		1690.77	341.66 341.72	342.8	342.36 342.33											-			-					-		+
1645.6	342.98		343		1097.3	341.72	342.8	342.33																					+
1658.3	341.99	343.5	342.7				+						1					1	1					1		1			+
1667.7	342.14		342.3																										1
1677.2	341.94		342.2				1						1		1			1	1	1				1	1	1			1
1682	341.24		342.2																										1
1686.9	341.68		342.2					_			_					_	_												1
1697.3	341.74	342.7	342.2				1 7						I																1 -

Profile Reach 6 (UT Sta. 19+02.1 to 21+93.9)

🔸 As-Built Thalweg 🔹 As-Built Bankfull 🗕 2008 Thalweg 🔹 2008 Bankfull 🛶 2009 Thalweg 🔺 2009 Bankfull 🔶 2010 Thalweg 🔶 2010 Water Surface 🔹 2010 Bankfull

		As-Built					Year 1					Year 2					Year 3					Year 4					Year 5		
Sta.	Elev	Bankfull	WS	Feature	Sta.	Elev	Bankfull	WS	Feature	Sta.	Elev	WS	Bankfull	Feature	Sta.	Elev	WS	Bankfull	Feature	Sta.	Elev	Bankfull	WS	Feature	Sta.	Elev	Bankfull	WS	Feature
1902.1	340.1	341.1	340.3		1902.1	340.2	341.1	340.5		1902.10	340.15	340.60	341.13		1902.10	340.10	340.47	341.15											
1915.9	339.76		340		1911.52	340.12		340.36		1918.22	340.01	340.22			1914.17	340.08	340.33												
1927.2	339.45	340.4	339.6		1923.31	339.72	340.92	340.04		1930.42	338.96	339.82			1928.12	339.30	339.71												
1931.9	338.69		339.6		1928.02	339.03		339.68		1936.92	338.61	339.82			1940.29	338.11	339.74		MaxD										
1940.8	339.08	340.3	339.6		1935.66	338.75		339.67		1946.12	339.26	339.77			1947.99	339.35	339.72	340.70											
1952.2	339.27		339.5		1944.68	339.32		339.67		1963.72	339.20	339.74			1963.99	339.23	339.58		Pool										
1964.4	339.23		339.4		1961.35	339.26	340.36	339.57		1973.00	338.77	339.73	340.47	XS	1973.00	338.71	339.60	340.38	XS#22										
1973	338.75	340.1	339.4		1969.54	338.8		339.57		1980.89	339.06	339.68			1977.40	339.04	339.58												
1980.8	339.1		339.3		1975.83	338.93		339.56		1993.30	339.08	339.61			1994.80	339.17	339.50		Pool										
1995.7	339.03		339.3		1985.37	339.03	340.1	339.51		1997.98	338.67	339.56			2000.80	338.21	339.52	340.00	MaxD										
2002.7	337.96		339.3		1994.56	339.09		339.4		2003.62	337.88	339.53		MaxD	2009.40	339.09	339.40												1
2007.4	338.9		339.3		2000	338.17		339.4		2009.17	338.94	339.54	340.20		2019.80	338.96	339.39	339.93											1
2018	338.98	339.9	339.2		2006.05	338.07	340.02	339.4		2023.98	338.96	339.41			2028.80	338.93	339.21		Pool										1
2031	338.74		339.1		2016.56	339.05	340.03	339.36		2032.06	338.20	339.18		MaxD	2032.80	338.26	339.16		MaxD										
2033.8	338.2		339.1		2025.94	338.94		339.31		2045.06	338.96	339.17			2039.40	338.85	339.15	339.89											1
2039.8	338.76		339.1		2031.24	338.85		339.2		2056.16	337.78	338.98	339.75		2053.40	338.04	338.95		MaxD										1
2051.8	338.75		338.9		2034.87	338.27		339.2		2063.91	338.65	338.85			2061.40		338.90												1
2057.1	337.96	339.7	338.9		2038.66	338.67		339.2		2076.01	338.40	338.70			2079.40	338.45	338.67	339.53											
2061	338.45		338.9		2045.55	338.9	339.95	339.14		2084.41	338.41	338.65	339.27		2088.40	338.14	338.52		Pool										1
2074.8	338.5	339.5	338.8		2052.08	339.07		339.14		2103.75	337.36	338.65			2099.90	337.25	338.54		MaxD										1
2091	338.23		338.4		2057.14	337.9		339.14		2123.85	338.06	338.19			2108.80	338.14	338.40												
2098.9	337.41		338.3		2062.2	338.65	339.8	339.14		2135.85	336.36	338.25			2121.80	337.90	338.08												1
2104.5	337.95		338.3		2071.43	338.73	339.7	339.06		2153.35	337.88	338.27	338.95		2135.00	336.49	338.09	338.70	MaxD										
2114	338.15	339.3	338.2		2084.27	338.29		338.6		2160.85	337.85	338.22			2152.90	337.82	338.10												
2123.2	338.02		338.2		2094.86	338.18	339.3	338.51		2170.55	337.85	338.21			2160.80	337.62	338.04												1
2132.6	336.63		338.2		2097.5	337.2		338.51		2181.05	337.34	338.20		MaxD	2169.80	337.52	338.05												
2138.1	337.43		338.2		2108.81	338.06	339.2	338.51		2193.90	337.85	338.21	338.84		2178.90	337.25	338.04												1
2159.9	337.83		338.2		2122.38	337.98		338.42							2187.90	337.68	338.03												
2171.1	337.77		338.2		2128.2	336.49		338.33							2193.90	337.81	338.02	338.65											1
2178.8	337.3		338.2	1	2135.7	336.63		338.33						1		1		1	1					1	1	1			1
2186.1	337.75		338.2		2145.07	337.71	338.65	338.33										1											1
2193.9	337.96	338.5	338.1	1	2159.93	337.83		338.33						1		1		1	1					1	1	1			1
					2171.41	337.66		338.29										1											1
					2180.41	337.22		338.28																					1
			-		2185.55	337.65		338.27										1				-							1
					2193.9	337.86	338.6	338.2																					

APPENDIX C-5: PEBBLE COUNT PLOTS AND RAW DATA TABLES – ELLINGTON BRANCH

								PEBBL	E COUN	T DAT	A - CUM	MULAT	TIVE SA	MPLE							
Site:							El	lington Branc	h Stream Miti	gation Site									Date:	J	une-10
Location:								Warren Cou	inty - North C	arolina									Party:		GLS
										PAR	TICLE COU	INTS									
Inches	Particle	Millimeter	Group	EB XS1	EB XS2	EB XS3	EB XS4	EB XS5	EB XS 6	EB XS7	EB XS8	EB XS 9	EB XS10	EB XS11	EB XS12	EB XS13	EB XS14	EB XS 15	Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	Silt/Clay			2	3	2	6		4	9							26	5.8%	5.8%
	Very Fine	.062125	S	9	4	2	4	4			5	7				2	8	3	48	10.7%	16.4%
	Fine	.12525	Α		8	6	1		10	1	11	10	3	5	7	2	4	6	74	16.4%	32.9%
	Medium	.2550	N	15	8	7	12	9		2	4	2	2	10	7	10	6	14	108	24.0%	56.9%
	Coarse	.50 - 1.0	D		9	6	7		3	2	4	2		10	1	7	5	2	58	12.9%	69.8%
.0408	Very Coarse	1.0 - 2.0	S	6	1	1	3	4	4	5			2	5	2		2	5	40	8.9%	78.7%
.0816	Very Fine	2.0 - 4.0				3		3	2	6	1				3		1		19	4.2%	82.9%
.1622	Fine	4.0 - 5.7	G					1	1	3			4		4				13	2.9%	85.8%
.2231	Fine	5.7 - 8.0	R			1		4	1	3	1		3		1	2	1		17	3.8%	89.6%
.3144	Medium	8.0 - 11.3	А					2	3	5			12			4	2		28	6.2%	95.8%
.4463	Medium	11.3 - 16.0	V			2							3		2	2			9	2.0%	97.8%
.6389	Coarse	16.0 - 22.6	E					1		2			1			1	1		6	1.3%	99.1%
.89 - 1.26	Coarse	22.6 - 32.0	L												2				0	0.0%	99.1%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S							1					2				3	0.7%	99.8%
1.77 - 2.5	Very Coarse	45.0 - 64.0													1				1	0.2%	100.0%
2.5 - 3.5	Small	64 - 90	C																0	0.0%	100.0%
3.5 - 5.0 5.0 - 7.1	Small	90 - 128 128 - 180	O B																0	0.0%	100.0% 100.0%
5.0 - 7.1 7.1 - 10.1	Large Large	128 - 180 180 - 256	B																0	0.0%	100.0%
10.1 - 14.3	Small	256 - 362	B																0	0.0%	100.0%
10.1 - 14.5 14.3 - 20	Small	250 - 362 362 - 512	B																0	0.0%	100.0%
20 - 40	Medium	512 - 1024	D																0	0.0%	100.0%
40 - 80	Lrg- Very Lrg	1024 - 2048	R																0	0.0%	100.0%
	Bedrock		BDRK																0	0.0%	100.0%
			Totals	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	450	100%	100%
	Feature o	or Pebble Coun	t Type	Pool	Riffle	Pool	Riffle	Pool	Riffle	Riffle	Pool	Pool	Riffle	Pool	Riffle	Pool	Riffle	Pool			

(i.e. Riffle, Pool, Pavement, Classification)

APPENDIX C-5 Continued: PEBBLE COUNT PLOTS AND RAW DATA TABLES – UT TO ELLINGTON BRANCH

				Р	EBBLE	COUNT	DATA -	UNNAN	IED TR	IBUTAF	ку то е	LLINGTO	N BRAN	ICH				
Site:		Ellingtor	n Branch Strea	m Mitigation	Site - Unnam	ed Tributary										Date:	Ju	ne-10
Location:			Warren	n County Nort	h Carolina											Party:	(JLS
									PARTIC	LE COUNTS	5							
Inches	Particle	Millimeter	Group	XS16	XS17	XS18	XS19	XS20	XS21	XS22	XS23					Total No.	Item %	% Cumulati
	Silt/Clay	< 0.062	Silt/Clay	1	4	19	5	4	5	13	5					56	23.3%	23.3%
	Very Fine	.062125	S	7	7	7	6	7	11	8	8					61	25.4%	48.8%
	Fine	.12525	А	2	8	4	3	15	7	5	13					57	23.8%	72.5%
	Medium	.2550	N	4	9		14	3	3	2	3					38	15.8%	88.3%
	Coarse	.50 - 1.0	D	2	2		2				1					7	2.9%	91.3%
.0408	Very Coarse	1.0 - 2.0	S	6				1	1	2						10	4.2%	95.4%
.0816	Very Fine	2.0 - 4.0	~													0	0.0%	95.4%
.1622	Fine	4.0 - 5.7	G	1					1							2	0.8%	96.3%
.2231	Fine	5.7 - 8.0	R													0	0.0%	96.3%
.3144	Medium	8.0 - 11.3	А	2					1							3	1.3%	97.5%
.4463	Medium	11.3 - 16.0	v	1												1	0.4%	97.9%
.6389	Coarse	16.0 - 22.6	E													0	0.0%	97.9%
.89 - 1.26	Coarse	22.6 - 32.0	L	1												1	0.4%	98.3%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	2					1							3	1.3%	99.6%
1.77 - 2.5	Very Coarse	45.0 - 64.0														0	0.0%	99.6%
2.5 - 3.5	Small	64 - 90	C	1												1	0.4%	100.0%
3.5 - 5.0	Small	90 - 128	0													0	0.0%	100.0%
5.0 - 7.1	Large	128 - 180	В													0	0.0%	100.0%
7.1 - 10.1	Large	180 - 256	L													0	0.0%	100.0%
10.1 - 14.3	Small	256 - 362	В													0	0.0%	100.0%
14.3 - 20	Small	362 - 512	L													0	0.0%	100.0%
20 - 40	Medium	512 - 1024	D													0	0.0%	100.0%
40 - 80	Lrg- Very Lrg	1024 - 2048	R													0	0.0%	100.0%
	Bedrock		BDRK													0	0.0%	100.0%
			Totals	30	30	30	30	30	30	30	30	0	0	0	0	240	100%	100%
	Feature	or Pebble Count 7	Гуре	Pool	Riffle	Pool	Riffle	Pool	Riffle	Pool	Riffle							

(i.e. Riffle, Pool, Pavement, Classification)

